Synergistic Impacts of Phosphorus Deficiency Coupled with Thermal and High-Light Stress on Physiological Profiles of Cultivated <i>Saccharina japonica</i>
Global kelp farming is garnering growing attention for its contributions to fishery yields, environmental remediation, and carbon neutrality efforts. Kelp farming systems face escalating pressures from compounded climatic and environmental stressors. A severe outbreak disaster caused extensive kelp...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Plants |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2223-7747/14/10/1412 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Global kelp farming is garnering growing attention for its contributions to fishery yields, environmental remediation, and carbon neutrality efforts. Kelp farming systems face escalating pressures from compounded climatic and environmental stressors. A severe outbreak disaster caused extensive kelp mortality and significant economic losses in Rongcheng, China, one of the world’s largest kelp farming areas. This study investigated the growth and physiological responses of <i>Saccharina japonica</i> to combined stressors involving three levels of N:P ratios (10:1 as a control; 100:1 and 500:1 to represent phosphorus deficiency stress) and two temperature/light regimes (12 °C, 90 μmol photons m<sup>−2</sup> s<sup>−1</sup> as a control, and 17 °C, 340 μmol photons m<sup>−2</sup> s<sup>−1</sup> to represent thermal and high-light stress). The results demonstrated that phosphorus deficiency significantly inhibited the relative growth rate of kelp (24% decrease), and the strongest growth inhibition in kelp was observed at the N:P ratio of 500:1 combined with thermal and high-light stress. The algal tissue was whitened due to its progressive disintegration under escalating stress, coupled with damage to its chloroplasts and nucleus ultrastructures. Phosphorus-deficiency-induced declines in photochemistry (27–56% decrease) and chlorophyll content (63% decrease) were paradoxically and transiently reversed by thermal and high-light stress, but this “false recovery” accelerated subsequent metabolic collapse (a 60–75% decrease in the growth rate and a loss of thallus integrity). Alkaline phosphatase was preferentially activated to cope with phosphorus deficiency combined with photothermal stress, while acid phosphatase was subsequently induced to provide auxiliary support. <i>S. japonica</i> suppressed its metabolism but upregulated its nucleotides under phosphorus deficiency; however, the energy/amino acid/coenzyme pathways were activated and a broad spectrum of metabolites were upregulated under combined stressors, indicating that <i>S. japonica</i> employs a dual adaptive strategy where phosphorus scarcity triggers metabolic conservation. Thermal/light stress can override phosphorus limitations by activating specific compensatory pathways. The findings of this study provide a foundation for the sustainable development of kelp farming under climate and environmental changes. |
|---|---|
| ISSN: | 2223-7747 |