Profiling the Genomes and Secreted Effector Proteins in <i>Phytopythium vexans</i> Global Strains
<i>Phytopythium vexans</i> is a plant pathogen responsible for a variety of destructive diseases in crops worldwide. This includes patch canker, damping-off, root, and crown rots in economically important crops, such as apple, pear, grapevine, citrus, avocado, and kiwi. The pathogen has...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Journal of Fungi |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2309-608X/11/7/477 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | <i>Phytopythium vexans</i> is a plant pathogen responsible for a variety of destructive diseases in crops worldwide. This includes patch canker, damping-off, root, and crown rots in economically important crops, such as apple, pear, grapevine, citrus, avocado, and kiwi. The pathogen has a global distribution, and a recent report confirmed its presence in southern Ontario, Canada. This study presents the first genome sequencing, assembly, and annotation of the Canadian <i>P. vexans</i> strain SS21. To explore how variation in secreted protein repertoires may relate to infection strategies and host adaptation, we compared the predicted secretome of SS21 with reference strains from Iran (CBS 119.80) and China (HF1). The analysis revealed that HF1 harbors a larger set of CAZymes, sterol-binding proteins, and predicted effectors, which may suggest broader adaptive potential. In contrast, strain SS21 appears to have adapted to a niche-specific strategy, with fewer necrosis-inducing proteins, glucanase inhibitors, and effectors, possibly indicating adaptation to specific hosts or ecological conditions. Comparative genome data highlight distinct evolutionary trajectories that may have shaped each strain’s infection strategy, with SS21 potentially serving as a robust additional reference for future studies on <i>P. vexans</i> biology and host interactions. While this analysis identifies key candidate effectors, gene expression studies are required to validate their functional roles in infection and host manipulation. |
|---|---|
| ISSN: | 2309-608X |