Effective Liquid–Liquid Extraction for the Recovery of Grape Pomace Polyphenols from Natural Deep Eutectic Solvents (NaDES)
Natural deep eutectic solvents (NaDESs) are emerging solvents for their yield when used for extraction of different molecules, including polyphenols. NaDESs are a cutting-edge technology that offers numerous advantages, including cheap cost, safety, effectiveness and environmental friendliness. Howe...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Separations |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2297-8739/12/6/148 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Natural deep eutectic solvents (NaDESs) are emerging solvents for their yield when used for extraction of different molecules, including polyphenols. NaDESs are a cutting-edge technology that offers numerous advantages, including cheap cost, safety, effectiveness and environmental friendliness. However, due to NaDES’ high boiling point, the recovery and separation of compounds after the extraction is the bottleneck of the process. In this work, two affordable methods were tested for the recovery of phenolic compounds from three binary NaDESs (composed of choline chloride mixed separately with lactic acid, tartaric acid or glycerol as hydrogen bond donors): the antisolvent and the liquid–liquid extraction methods. The former was assessed by diluting the extracts with different aliquots of water, employed as antisolvent, which was ineffective. For the liquid–liquid extraction method, ethyl acetate (EtOAc), acetonitrile (ACN), 2-chlorobutane (2-CB) and 2-methyltetrahydrofuran (2-MeTHF) were compared. Except for ACN, all solvents were perfectly immiscible with the three NaDESs, forming biphasic systems that were analyzed by colorimetric assays and HPLC/MS. 2-MeTHF applied on a 10-fold water dilution of the NaDES extract reached recovery percentages higher than 90% for most of the non-anthocyanin phenols and good recovery (up to 80%) for some anthocyanins. 2-MeTHF appears to be the first known solvent capable of extracting anthocyanins from NaDESs. Finally, a two-step liquid–liquid extraction performed firstly with EtOAc and subsequently with 2-MeTHF is proposed for the separation of different phenolic fractions. |
|---|---|
| ISSN: | 2297-8739 |