Erdős–Rényi Poissonized

We introduce a variant of the Erdős–Rényi random graph where the number of vertices is random and follows a Poisson law. A very simple Markov property of the model entails that the Lukasiewicz exploration is made of independent Poisson increments. Using a vanilla Poisson counting process, this enabl...

Full description

Saved in:
Bibliographic Details
Main Author: Curien, Nicolas
Format: Article
Language:English
Published: Académie des sciences 2024-07-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.578/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206230959783936
author Curien, Nicolas
author_facet Curien, Nicolas
author_sort Curien, Nicolas
collection DOAJ
description We introduce a variant of the Erdős–Rényi random graph where the number of vertices is random and follows a Poisson law. A very simple Markov property of the model entails that the Lukasiewicz exploration is made of independent Poisson increments. Using a vanilla Poisson counting process, this enables us to give very short proofs of classical results such as the phase transition for the giant component or the connectedness for the standard Erdős–Rényi model.
format Article
id doaj-art-58481a7b79ab485a851deb2ea2a0b671
institution Kabale University
issn 1778-3569
language English
publishDate 2024-07-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-58481a7b79ab485a851deb2ea2a0b6712025-02-07T11:21:51ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-07-01362G664965610.5802/crmath.57810.5802/crmath.578Erdős–Rényi PoissonizedCurien, Nicolas0Université Paris-SaclayWe introduce a variant of the Erdős–Rényi random graph where the number of vertices is random and follows a Poisson law. A very simple Markov property of the model entails that the Lukasiewicz exploration is made of independent Poisson increments. Using a vanilla Poisson counting process, this enables us to give very short proofs of classical results such as the phase transition for the giant component or the connectedness for the standard Erdős–Rényi model.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.578/
spellingShingle Curien, Nicolas
Erdős–Rényi Poissonized
Comptes Rendus. Mathématique
title Erdős–Rényi Poissonized
title_full Erdős–Rényi Poissonized
title_fullStr Erdős–Rényi Poissonized
title_full_unstemmed Erdős–Rényi Poissonized
title_short Erdős–Rényi Poissonized
title_sort erdos renyi poissonized
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.578/
work_keys_str_mv AT curiennicolas erdosrenyipoissonized