Controllable Highly Oriented Skyrmion Track Array in Bulk Fe_{3}GaTe_{2}

Magnetic skyrmions are emerging as promising candidates for next-generation information technologies, while the realization of scalable skyrmion lattices with tailored configurations is essential for advancing fundamental skyrmion physics and developing future applications. Here we achieved the cont...

Full description

Saved in:
Bibliographic Details
Main Authors: Yunhao Wang, Shiyu Zhu, Chensong Hua, Guojing Hu, Linxuan Li, Senhao Lv, Jianfeng Guo, Jiawei Hu, Runnong Zhou, Zizhao Gong, Chengmin Shen, Zhihai Cheng, Jinan Shi, Wu Zhou, Haitao Yang, Weichao Yu, Jiang Xiao, Hong-Jun Gao
Format: Article
Language:English
Published: American Physical Society 2025-04-01
Series:Physical Review X
Online Access:http://doi.org/10.1103/PhysRevX.15.021032
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Magnetic skyrmions are emerging as promising candidates for next-generation information technologies, while the realization of scalable skyrmion lattices with tailored configurations is essential for advancing fundamental skyrmion physics and developing future applications. Here we achieved the controllable generation and regulation of a large-area, highly oriented skyrmion track array (STA) in ferromagnet Fe_{3}GaTe_{2} using a vector-magnetic-field manipulation technique. The orientation and ordering of STA, along with the types and density of skyrmions, are precisely controlled by modulating parameters during the manipulation. The critical roles of in-plane magnetic fields and Dzyaloshinskii-Moriya interaction in STA generation is further confirmed by micromagnetic simulation. Our findings develop a strategy for engineering large-area and highly oriented skyrmion configurations, offering a new pathway for the future application of next-generation spintronic and information technologies.
ISSN:2160-3308