Evaluation of single chamber electrochemical reduction of CO2 to formate for application under biocompatible conditions
The electrochemical CO2 reduction reaction (eCO2RR) facilitates high rates and yields for the selective production of formate, a quintessential C1-compound that can serve as a valuable carbon and energy source for biosynthesis. The use of double-chamber (DC) electrochemical cells with membranes is d...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-07-01
|
| Series: | Journal of CO2 Utilization |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2212982025001209 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The electrochemical CO2 reduction reaction (eCO2RR) facilitates high rates and yields for the selective production of formate, a quintessential C1-compound that can serve as a valuable carbon and energy source for biosynthesis. The use of double-chamber (DC) electrochemical cells with membranes is deemed essential to avoid mixing of electrochemical products (i.e. anodic oxygen and cathodic formate) and thus cross-reactions that lower yields, Faradaic efficiency (FE) and effective rate. However, single-chamber (SC) setups for eCO2RR can be more suitable to combine with bioprocesses. This work comprehensively evaluates, using different experimental set-ups, the conditions under which SC operation can obtain results comparable to DC systems. At a 50 mL scale, under biocompatible conditions, formate production in the SC setup achieved a 14 % reduction in the production rate (146 mg L−1 h−1 for SC and 170 mg L−1 h−1 for DC) and a 15 % decrease in FE (72.2 % in SC and 84.7 % in DC). The highest formate concentration produced in 24 h SC experiments was 1.8 g·L−1 with FE of 41 %, a concentration appropriate for fermentation processes. The SC operation of eCO2RR to formate without a membrane could reduce energy losses and capital costs, although at the cost of an expected reduction in rate and FE. |
|---|---|
| ISSN: | 2212-9839 |