Evaluation of single chamber electrochemical reduction of CO2 to formate for application under biocompatible conditions

The electrochemical CO2 reduction reaction (eCO2RR) facilitates high rates and yields for the selective production of formate, a quintessential C1-compound that can serve as a valuable carbon and energy source for biosynthesis. The use of double-chamber (DC) electrochemical cells with membranes is d...

Full description

Saved in:
Bibliographic Details
Main Authors: Zainab Ul, Mira Sulonen, Philip Haus, Paniz Izadi, Juan Antonio Baeza, Falk Harnisch, Albert Guisasola
Format: Article
Language:English
Published: Elsevier 2025-07-01
Series:Journal of CO2 Utilization
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2212982025001209
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The electrochemical CO2 reduction reaction (eCO2RR) facilitates high rates and yields for the selective production of formate, a quintessential C1-compound that can serve as a valuable carbon and energy source for biosynthesis. The use of double-chamber (DC) electrochemical cells with membranes is deemed essential to avoid mixing of electrochemical products (i.e. anodic oxygen and cathodic formate) and thus cross-reactions that lower yields, Faradaic efficiency (FE) and effective rate. However, single-chamber (SC) setups for eCO2RR can be more suitable to combine with bioprocesses. This work comprehensively evaluates, using different experimental set-ups, the conditions under which SC operation can obtain results comparable to DC systems. At a 50 mL scale, under biocompatible conditions, formate production in the SC setup achieved a 14 % reduction in the production rate (146 mg L−1 h−1 for SC and 170 mg L−1 h−1 for DC) and a 15 % decrease in FE (72.2 % in SC and 84.7 % in DC). The highest formate concentration produced in 24 h SC experiments was 1.8 g·L−1 with FE of 41 %, a concentration appropriate for fermentation processes. The SC operation of eCO2RR to formate without a membrane could reduce energy losses and capital costs, although at the cost of an expected reduction in rate and FE.
ISSN:2212-9839