Numerical Study of the Compressible Air Flow Through a Two-output Fluidic Oscillator
This paper investigates the dynamic internal flow structure, and its outlet jets, of the fluidic oscillator. The objective of this numerical study is to provide a better understanding of this type of jet for a research domain aimed at improving various aspects of fluid flow control. The present work...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Isfahan University of Technology
2025-02-01
|
Series: | Journal of Applied Fluid Mechanics |
Subjects: | |
Online Access: | https://www.jafmonline.net/article_2603_b167399724393d0538d22d1ff45cc02b.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper investigates the dynamic internal flow structure, and its outlet jets, of the fluidic oscillator. The objective of this numerical study is to provide a better understanding of this type of jet for a research domain aimed at improving various aspects of fluid flow control. The present work focuses on the two-output fluidic oscillator, which involves no moving parts in direct contact with the flow. An analysis of the internal and external dynamics of the two-output fluidic oscillator using numerical simulations for compressible air flow was investigated by employing the SST turbulence model. The study highlights the periodic oscillation of the jet inside the fluidic oscillator between the two branches driven by the Coanda effect, which characterizes the oscillatory behavior of the fluidic oscillator. Furthermore, it reveals the importance of controlling the inlet pressure to maintain the oscillatory behavior. The results demonstrate that the outlet velocity is influenced by the inlet conditions as well as the system's geometry. In conclusion, the article provides essential insights into the dynamics of the two-output fluidic oscillator, emphasizing the impact of physical and geometrical control parameters on flow behavior. |
---|---|
ISSN: | 1735-3572 1735-3645 |