Gravitational edge mode in N $$ \mathcal{N} $$ = 1 Jackiw-Teitelboim supergravity

Abstract We study the gravitational edge mode in the N $$ \mathcal{N} $$ = 1 Jackiw-Teitelboim (JT) supergravity on the disk and its osp(2|1) BF formulation. We revisit the derivation of the finite-temperature Schwarzian action in the conformal gauge of the bosonic JT gravity through wiggling bounda...

Full description

Saved in:
Bibliographic Details
Main Authors: Kyung-Sun Lee, Akhil Sivakumar, Junggi Yoon
Format: Article
Language:English
Published: SpringerOpen 2024-08-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP08(2024)011
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850129926946029568
author Kyung-Sun Lee
Akhil Sivakumar
Junggi Yoon
author_facet Kyung-Sun Lee
Akhil Sivakumar
Junggi Yoon
author_sort Kyung-Sun Lee
collection DOAJ
description Abstract We study the gravitational edge mode in the N $$ \mathcal{N} $$ = 1 Jackiw-Teitelboim (JT) supergravity on the disk and its osp(2|1) BF formulation. We revisit the derivation of the finite-temperature Schwarzian action in the conformal gauge of the bosonic JT gravity through wiggling boundary and the frame fluctuation descriptions. Extending our method to N $$ \mathcal{N} $$ = 1 JT supergravity, we derive the finite-temperature super-Schwarzian action for the edge mode from both the wiggling boundary and the superframe field fluctuation. We emphasize the crucial role of the inversion of the super-Schwarzian derivative in elucidating the relation between the isometry and the OSp(2|1) gauging of the super-Schwarzian action. In osp(2|1) BF formulation, we discuss the asymptotic AdS condition. We employ the Iwasawa-like decomposition of OSp(2|1) group element to derive the super-Schwarzian action at finite temperature. We demonstrate that the OSp(2|1) gauging arises from inherent redundancy in the Iwasawa-like decomposition. We also discuss the path integral measure obtained from the Haar measure of OSp(2|1).
format Article
id doaj-art-57be9e2f0f8d40e0a5fa06070773d124
institution OA Journals
issn 1029-8479
language English
publishDate 2024-08-01
publisher SpringerOpen
record_format Article
series Journal of High Energy Physics
spelling doaj-art-57be9e2f0f8d40e0a5fa06070773d1242025-08-20T02:32:49ZengSpringerOpenJournal of High Energy Physics1029-84792024-08-012024813510.1007/JHEP08(2024)011Gravitational edge mode in N $$ \mathcal{N} $$ = 1 Jackiw-Teitelboim supergravityKyung-Sun Lee0Akhil Sivakumar1Junggi Yoon2School of Physics, Korea Institute for Advanced StudyAsia Pacific Center for Theoretical PhysicsSchool of Physics, Korea Institute for Advanced StudyAbstract We study the gravitational edge mode in the N $$ \mathcal{N} $$ = 1 Jackiw-Teitelboim (JT) supergravity on the disk and its osp(2|1) BF formulation. We revisit the derivation of the finite-temperature Schwarzian action in the conformal gauge of the bosonic JT gravity through wiggling boundary and the frame fluctuation descriptions. Extending our method to N $$ \mathcal{N} $$ = 1 JT supergravity, we derive the finite-temperature super-Schwarzian action for the edge mode from both the wiggling boundary and the superframe field fluctuation. We emphasize the crucial role of the inversion of the super-Schwarzian derivative in elucidating the relation between the isometry and the OSp(2|1) gauging of the super-Schwarzian action. In osp(2|1) BF formulation, we discuss the asymptotic AdS condition. We employ the Iwasawa-like decomposition of OSp(2|1) group element to derive the super-Schwarzian action at finite temperature. We demonstrate that the OSp(2|1) gauging arises from inherent redundancy in the Iwasawa-like decomposition. We also discuss the path integral measure obtained from the Haar measure of OSp(2|1).https://doi.org/10.1007/JHEP08(2024)0112D GravitySupergravity ModelsSuperspacesModels of Quantum Gravity
spellingShingle Kyung-Sun Lee
Akhil Sivakumar
Junggi Yoon
Gravitational edge mode in N $$ \mathcal{N} $$ = 1 Jackiw-Teitelboim supergravity
Journal of High Energy Physics
2D Gravity
Supergravity Models
Superspaces
Models of Quantum Gravity
title Gravitational edge mode in N $$ \mathcal{N} $$ = 1 Jackiw-Teitelboim supergravity
title_full Gravitational edge mode in N $$ \mathcal{N} $$ = 1 Jackiw-Teitelboim supergravity
title_fullStr Gravitational edge mode in N $$ \mathcal{N} $$ = 1 Jackiw-Teitelboim supergravity
title_full_unstemmed Gravitational edge mode in N $$ \mathcal{N} $$ = 1 Jackiw-Teitelboim supergravity
title_short Gravitational edge mode in N $$ \mathcal{N} $$ = 1 Jackiw-Teitelboim supergravity
title_sort gravitational edge mode in n mathcal n 1 jackiw teitelboim supergravity
topic 2D Gravity
Supergravity Models
Superspaces
Models of Quantum Gravity
url https://doi.org/10.1007/JHEP08(2024)011
work_keys_str_mv AT kyungsunlee gravitationaledgemodeinnmathcaln1jackiwteitelboimsupergravity
AT akhilsivakumar gravitationaledgemodeinnmathcaln1jackiwteitelboimsupergravity
AT junggiyoon gravitationaledgemodeinnmathcaln1jackiwteitelboimsupergravity