Distribution of matrices over $\mathbb{F}_q[x]$

In this paper, we count the number of matrices $A = (A_{i,j} )\in \mathcal{O} \subset \mathrm{Mat}_{n\times n}(\mathbb{F}_q[x])$ where $\deg (A_{i,j})\le k, 1\le i,j\le n$, $\deg (\det A) = t$, and $\mathcal{O}$ is a given orbit of $\mathrm{GL}_n(\mathbb{F}_q[x])$. By an elementary argument, we show...

Full description

Saved in:
Bibliographic Details
Main Author: Ji, Yibo
Format: Article
Language:English
Published: Académie des sciences 2024-10-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.616/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206151938048000
author Ji, Yibo
author_facet Ji, Yibo
author_sort Ji, Yibo
collection DOAJ
description In this paper, we count the number of matrices $A = (A_{i,j} )\in \mathcal{O} \subset \mathrm{Mat}_{n\times n}(\mathbb{F}_q[x])$ where $\deg (A_{i,j})\le k, 1\le i,j\le n$, $\deg (\det A) = t$, and $\mathcal{O}$ is a given orbit of $\mathrm{GL}_n(\mathbb{F}_q[x])$. By an elementary argument, we show that the above number is exactly $\# \mathrm{GL}_n(\mathbb{F}_q)\cdot q^{(n-1)(nk-t)}$. This formula gives an equidistribution result over $\mathbb{F}_q[x]$, which is an analogue, in strong form, of a result over $\mathbb{Z}$ proved in [2] and [3].
format Article
id doaj-art-57b455bd61bf47bba1972902113dfbef
institution Kabale University
issn 1778-3569
language English
publishDate 2024-10-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-57b455bd61bf47bba1972902113dfbef2025-02-07T11:22:49ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-10-01362G888389310.5802/crmath.61610.5802/crmath.616Distribution of matrices over $\mathbb{F}_q[x]$Ji, Yibo0https://orcid.org/0000-0002-8873-6711Cornell University, United StatesIn this paper, we count the number of matrices $A = (A_{i,j} )\in \mathcal{O} \subset \mathrm{Mat}_{n\times n}(\mathbb{F}_q[x])$ where $\deg (A_{i,j})\le k, 1\le i,j\le n$, $\deg (\det A) = t$, and $\mathcal{O}$ is a given orbit of $\mathrm{GL}_n(\mathbb{F}_q[x])$. By an elementary argument, we show that the above number is exactly $\# \mathrm{GL}_n(\mathbb{F}_q)\cdot q^{(n-1)(nk-t)}$. This formula gives an equidistribution result over $\mathbb{F}_q[x]$, which is an analogue, in strong form, of a result over $\mathbb{Z}$ proved in [2] and [3].https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.616/Counting formulaFinite fieldPolynomial ring
spellingShingle Ji, Yibo
Distribution of matrices over $\mathbb{F}_q[x]$
Comptes Rendus. Mathématique
Counting formula
Finite field
Polynomial ring
title Distribution of matrices over $\mathbb{F}_q[x]$
title_full Distribution of matrices over $\mathbb{F}_q[x]$
title_fullStr Distribution of matrices over $\mathbb{F}_q[x]$
title_full_unstemmed Distribution of matrices over $\mathbb{F}_q[x]$
title_short Distribution of matrices over $\mathbb{F}_q[x]$
title_sort distribution of matrices over mathbb f q x
topic Counting formula
Finite field
Polynomial ring
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.616/
work_keys_str_mv AT jiyibo distributionofmatricesovermathbbfqx