Line Defects in One-Dimensional Hexagonal Quasicrystals

Using the eight-dimensional framework of the integral formalism of one-dimensional quasicrystals, the analytical expressions for the displacement fields and stress functions of line defects, which are dislocations and line forces, in one-dimensional hexagonal quasicrystals of Laue class 10 are deriv...

Full description

Saved in:
Bibliographic Details
Main Author: Markus Lazar
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/9/1493
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Using the eight-dimensional framework of the integral formalism of one-dimensional quasicrystals, the analytical expressions for the displacement fields and stress functions of line defects, which are dislocations and line forces, in one-dimensional hexagonal quasicrystals of Laue class 10 are derived. The self-energy of a straight dislocation, the self-energy of a line force, the Peach–Koehler force between two straight dislocations, and the Cherepanov force between two straight line forces in one-dimensional hexagonal quasicrystals of Laue class 10 are calculated. In addition, the two-dimensional Green tensor of one-dimensional hexagonal quasicrystals of Laue class 10 is given within the framework of the integral formalism.
ISSN:2227-7390