Multiplicative reduced bases for hyperelasticity

The present paper introduces multiplicative reduced bases for hyperelasticity relying on a truncated version of the Baker–Campbell–Hausdorff’s expansion. We show such a construction is equally interpolatory (in a multiplicative way) for the fields of deformation gradients, surfacic and volumetric de...

Full description

Saved in:
Bibliographic Details
Main Author: Hauret, Patrice
Format: Article
Language:English
Published: Académie des sciences 2024-07-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.584/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present paper introduces multiplicative reduced bases for hyperelasticity relying on a truncated version of the Baker–Campbell–Hausdorff’s expansion. We show such a construction is equally interpolatory (in a multiplicative way) for the fields of deformation gradients, surfacic and volumetric deformation measures involved in large deformation mechanics. The method is naturally derived from a fully consistent variational setting and we establish an upper bound of the error in the energy norm. From a computational standpoint, the approach achieves efficient Kolmogorov $n$-width decay when very large rotations and incompressibility are involved.
ISSN:1778-3569