Wireless In Situ Catalytic Electron Signaling‐Mediated Transcriptomic Reprogramming for Neuron Regeneration via Adaptable Antennas
Abstract Electron signaling and oxygen level are vital for regulating neural‐cell fate and brain recovery. However, clinical challenges arise from the short half‐life and the difficulty of spatiotemporally controlled oxygen release and electric signals. In this study, a wireless‐charging sustained o...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2025-07-01
|
| Series: | Advanced Science |
| Subjects: | |
| Online Access: | https://doi.org/10.1002/advs.202504786 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849316565891153920 |
|---|---|
| author | Hoi Man Iao Chih‐Ying Chen Ya‐Hui Lin Wan‐Chi Pan Chun‐Yi Liang Hsiu‐Ching Liu Lo‐Jei Ching Pei‐Yu Weng Min‐Ren Chiang Ru‐Siou Hsu Tsu‐Chin Chou I‐Chi Lee Lun‐De Liao Li‐An Chu Shih‐Hwa Chiou Shang‐Hsiu Hu |
| author_facet | Hoi Man Iao Chih‐Ying Chen Ya‐Hui Lin Wan‐Chi Pan Chun‐Yi Liang Hsiu‐Ching Liu Lo‐Jei Ching Pei‐Yu Weng Min‐Ren Chiang Ru‐Siou Hsu Tsu‐Chin Chou I‐Chi Lee Lun‐De Liao Li‐An Chu Shih‐Hwa Chiou Shang‐Hsiu Hu |
| author_sort | Hoi Man Iao |
| collection | DOAJ |
| description | Abstract Electron signaling and oxygen level are vital for regulating neural‐cell fate and brain recovery. However, clinical challenges arise from the short half‐life and the difficulty of spatiotemporally controlled oxygen release and electric signals. In this study, a wireless‐charging sustained oxygen release from conductive microgels (SOCO) served as an antenna and an on‐demand O2 release for nerve regeneration is developed. Introducing “electromagnetic messenger”, using external alternating magnetic field (AMF) to enhance catalytic oxygen release and electrical stimulation to promote the reconstruction of blood vessels and neurons in vivo. SOCO also reduces TBI glial scarring by reducing activated microglia and stellate cells, promoting infiltration of new neurons. In whole‐brain analyses, effective somatostatin (Sst) production inhibits gamma‐aminobutyric acid (GABA) synthesis in injured areas, thereby improving brain function and behavioral recovery. Furthermore, spatial multiomics combined with single‐cell deconvolution analysis reveals the treatment reprogramming in vivo brain transcriptome of angiogenic markers (Il1a, Lgals3) and GABAergic pathway via modulation of GAD65/67 activity, guiding angiogenesis and neuronal regeneration. This in situ catalytic SOCO with noncontact AMF presents an “electromagnetic messenger”‐based therapeutics for reprogramming the neuro‐regeneration and brain function recovery in TBI. |
| format | Article |
| id | doaj-art-57903db6a3834f1b80be4e5df1af628f |
| institution | Kabale University |
| issn | 2198-3844 |
| language | English |
| publishDate | 2025-07-01 |
| publisher | Wiley |
| record_format | Article |
| series | Advanced Science |
| spelling | doaj-art-57903db6a3834f1b80be4e5df1af628f2025-08-20T03:51:43ZengWileyAdvanced Science2198-38442025-07-011228n/an/a10.1002/advs.202504786Wireless In Situ Catalytic Electron Signaling‐Mediated Transcriptomic Reprogramming for Neuron Regeneration via Adaptable AntennasHoi Man Iao0Chih‐Ying Chen1Ya‐Hui Lin2Wan‐Chi Pan3Chun‐Yi Liang4Hsiu‐Ching Liu5Lo‐Jei Ching6Pei‐Yu Weng7Min‐Ren Chiang8Ru‐Siou Hsu9Tsu‐Chin Chou10I‐Chi Lee11Lun‐De Liao12Li‐An Chu13Shih‐Hwa Chiou14Shang‐Hsiu Hu15Department of Biomedical Engineering and Environmental Sciences National Tsing Hua University Hsinchu 300044 TaiwanDepartment of Medical Research Taipei Veterans General Hospital Taipei 112201 TaiwanDepartment of Biomedical Engineering and Environmental Sciences National Tsing Hua University Hsinchu 300044 TaiwanDepartment of Biomedical Engineering and Environmental Sciences National Tsing Hua University Hsinchu 300044 TaiwanDepartment of Biomedical Engineering and Environmental Sciences National Tsing Hua University Hsinchu 300044 TaiwanDepartment of Biomedical Engineering and Environmental Sciences National Tsing Hua University Hsinchu 300044 TaiwanDepartment of Medical Research Taipei Veterans General Hospital Taipei 112201 TaiwanBrain Research Center National Tsing Hua University Hsinchu 300044 TaiwanDepartment of Biomedical Engineering and Environmental Sciences National Tsing Hua University Hsinchu 300044 TaiwanDepartment of Biomedical Engineering National Yang Ming Chiao Tung University Taipei 112304 TaiwanInstitute of Analytical and Environmental Sciences National Tsing Hua University Hsinchu 300044 TaiwanDepartment of Biomedical Engineering and Environmental Sciences National Tsing Hua University Hsinchu 300044 TaiwanInstitute of Biomedical Engineering and Nanomedicine National Health Research Institutes Miaoli County 35053 TaiwanDepartment of Biomedical Engineering and Environmental Sciences National Tsing Hua University Hsinchu 300044 TaiwanDepartment of Medical Research Taipei Veterans General Hospital Taipei 112201 TaiwanDepartment of Biomedical Engineering and Environmental Sciences National Tsing Hua University Hsinchu 300044 TaiwanAbstract Electron signaling and oxygen level are vital for regulating neural‐cell fate and brain recovery. However, clinical challenges arise from the short half‐life and the difficulty of spatiotemporally controlled oxygen release and electric signals. In this study, a wireless‐charging sustained oxygen release from conductive microgels (SOCO) served as an antenna and an on‐demand O2 release for nerve regeneration is developed. Introducing “electromagnetic messenger”, using external alternating magnetic field (AMF) to enhance catalytic oxygen release and electrical stimulation to promote the reconstruction of blood vessels and neurons in vivo. SOCO also reduces TBI glial scarring by reducing activated microglia and stellate cells, promoting infiltration of new neurons. In whole‐brain analyses, effective somatostatin (Sst) production inhibits gamma‐aminobutyric acid (GABA) synthesis in injured areas, thereby improving brain function and behavioral recovery. Furthermore, spatial multiomics combined with single‐cell deconvolution analysis reveals the treatment reprogramming in vivo brain transcriptome of angiogenic markers (Il1a, Lgals3) and GABAergic pathway via modulation of GAD65/67 activity, guiding angiogenesis and neuronal regeneration. This in situ catalytic SOCO with noncontact AMF presents an “electromagnetic messenger”‐based therapeutics for reprogramming the neuro‐regeneration and brain function recovery in TBI.https://doi.org/10.1002/advs.202504786adaptable microbeadscatalytic effectelectron signalingtranscriptomic reprogrammingnerve regeneration |
| spellingShingle | Hoi Man Iao Chih‐Ying Chen Ya‐Hui Lin Wan‐Chi Pan Chun‐Yi Liang Hsiu‐Ching Liu Lo‐Jei Ching Pei‐Yu Weng Min‐Ren Chiang Ru‐Siou Hsu Tsu‐Chin Chou I‐Chi Lee Lun‐De Liao Li‐An Chu Shih‐Hwa Chiou Shang‐Hsiu Hu Wireless In Situ Catalytic Electron Signaling‐Mediated Transcriptomic Reprogramming for Neuron Regeneration via Adaptable Antennas Advanced Science adaptable microbeads catalytic effect electron signaling transcriptomic reprogramming nerve regeneration |
| title | Wireless In Situ Catalytic Electron Signaling‐Mediated Transcriptomic Reprogramming for Neuron Regeneration via Adaptable Antennas |
| title_full | Wireless In Situ Catalytic Electron Signaling‐Mediated Transcriptomic Reprogramming for Neuron Regeneration via Adaptable Antennas |
| title_fullStr | Wireless In Situ Catalytic Electron Signaling‐Mediated Transcriptomic Reprogramming for Neuron Regeneration via Adaptable Antennas |
| title_full_unstemmed | Wireless In Situ Catalytic Electron Signaling‐Mediated Transcriptomic Reprogramming for Neuron Regeneration via Adaptable Antennas |
| title_short | Wireless In Situ Catalytic Electron Signaling‐Mediated Transcriptomic Reprogramming for Neuron Regeneration via Adaptable Antennas |
| title_sort | wireless in situ catalytic electron signaling mediated transcriptomic reprogramming for neuron regeneration via adaptable antennas |
| topic | adaptable microbeads catalytic effect electron signaling transcriptomic reprogramming nerve regeneration |
| url | https://doi.org/10.1002/advs.202504786 |
| work_keys_str_mv | AT hoimaniao wirelessinsitucatalyticelectronsignalingmediatedtranscriptomicreprogrammingforneuronregenerationviaadaptableantennas AT chihyingchen wirelessinsitucatalyticelectronsignalingmediatedtranscriptomicreprogrammingforneuronregenerationviaadaptableantennas AT yahuilin wirelessinsitucatalyticelectronsignalingmediatedtranscriptomicreprogrammingforneuronregenerationviaadaptableantennas AT wanchipan wirelessinsitucatalyticelectronsignalingmediatedtranscriptomicreprogrammingforneuronregenerationviaadaptableantennas AT chunyiliang wirelessinsitucatalyticelectronsignalingmediatedtranscriptomicreprogrammingforneuronregenerationviaadaptableantennas AT hsiuchingliu wirelessinsitucatalyticelectronsignalingmediatedtranscriptomicreprogrammingforneuronregenerationviaadaptableantennas AT lojeiching wirelessinsitucatalyticelectronsignalingmediatedtranscriptomicreprogrammingforneuronregenerationviaadaptableantennas AT peiyuweng wirelessinsitucatalyticelectronsignalingmediatedtranscriptomicreprogrammingforneuronregenerationviaadaptableantennas AT minrenchiang wirelessinsitucatalyticelectronsignalingmediatedtranscriptomicreprogrammingforneuronregenerationviaadaptableantennas AT rusiouhsu wirelessinsitucatalyticelectronsignalingmediatedtranscriptomicreprogrammingforneuronregenerationviaadaptableantennas AT tsuchinchou wirelessinsitucatalyticelectronsignalingmediatedtranscriptomicreprogrammingforneuronregenerationviaadaptableantennas AT ichilee wirelessinsitucatalyticelectronsignalingmediatedtranscriptomicreprogrammingforneuronregenerationviaadaptableantennas AT lundeliao wirelessinsitucatalyticelectronsignalingmediatedtranscriptomicreprogrammingforneuronregenerationviaadaptableantennas AT lianchu wirelessinsitucatalyticelectronsignalingmediatedtranscriptomicreprogrammingforneuronregenerationviaadaptableantennas AT shihhwachiou wirelessinsitucatalyticelectronsignalingmediatedtranscriptomicreprogrammingforneuronregenerationviaadaptableantennas AT shanghsiuhu wirelessinsitucatalyticelectronsignalingmediatedtranscriptomicreprogrammingforneuronregenerationviaadaptableantennas |