HyPyRameter: A Python Toolbox to Calculate Spectral Parameters from Hyperspectral Reflectance Data

Hyperspectral image cubes are information rich, typically containing hundreds of wavelengths and millions of spatial pixels. To condense this information into a more interpretable form, it is common to parameterize certain aspects of the spectra that are known to represent compositions of interest....

Full description

Saved in:
Bibliographic Details
Main Authors: Michael S. Phillips, Christian Tai Udovicic, Jeffrey E. Moersch, Udit Basu, Christopher W. Hamilton
Format: Article
Language:English
Published: IOP Publishing 2024-01-01
Series:The Planetary Science Journal
Subjects:
Online Access:https://doi.org/10.3847/PSJ/ad81f8
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849728913095262208
author Michael S. Phillips
Christian Tai Udovicic
Jeffrey E. Moersch
Udit Basu
Christopher W. Hamilton
author_facet Michael S. Phillips
Christian Tai Udovicic
Jeffrey E. Moersch
Udit Basu
Christopher W. Hamilton
author_sort Michael S. Phillips
collection DOAJ
description Hyperspectral image cubes are information rich, typically containing hundreds of wavelengths and millions of spatial pixels. To condense this information into a more interpretable form, it is common to parameterize certain aspects of the spectra that are known to represent compositions of interest. Parameterizations of spectral features are called spectral parameters . Spectral parameters can be combined thematically into red, green, and blue (RGB) images, called browse products , to visualize compositional variation across a surface. Here, we present the Hyperspectral Parameter (HyPyRameter) toolbox: an open-source library, written in Python, to calculate spectral parameters for hyperspectral reflectance data. With the HyPyRameter toolbox, a user can calculate spectral parameters from point spectra or hyperspectral image cubes. Users can take advantage of the native parameters built into the HyPyRameter library, or easily customize the library of parameter formulas with built-in functions to suit the needs of a specific investigation. HyPyRameter can be run with Jupyter notebooks provided on the GitHub repo ( http://github.com/Michael-S-Phillips/HyPyRameter ). HyPyRameter is a flexible tool, installable via Anaconda ( http://anaconda.org/michael--s--phillips/hypyrameter ), with potential for wide-ranging applications to diverse fields including, but not limited to, planetary science, geology, agriculture, and mineral resource exploration.
format Article
id doaj-art-56d06742f6494a5b87fa1c8d6957bbd2
institution DOAJ
issn 2632-3338
language English
publishDate 2024-01-01
publisher IOP Publishing
record_format Article
series The Planetary Science Journal
spelling doaj-art-56d06742f6494a5b87fa1c8d6957bbd22025-08-20T03:09:24ZengIOP PublishingThe Planetary Science Journal2632-33382024-01-0151125810.3847/PSJ/ad81f8HyPyRameter: A Python Toolbox to Calculate Spectral Parameters from Hyperspectral Reflectance DataMichael S. Phillips0Christian Tai Udovicic1https://orcid.org/0000-0001-9972-1534Jeffrey E. Moersch2Udit Basu3Christopher W. Hamilton4https://orcid.org/0000-0001-9731-517XLunar and Planetary Laboratory, The University of Arizona , Tucson, AZ, USAHawaii Institute of Geophysics and Planetology, The University of Hawaii at Manoa , Manoa, HI, USADepartment of Earth and Planetary Sciences, The University of Tennessee , Knoxville, TN, USADepartment of Earth and Planetary Sciences, The University of Tennessee , Knoxville, TN, USALunar and Planetary Laboratory, The University of Arizona , Tucson, AZ, USAHyperspectral image cubes are information rich, typically containing hundreds of wavelengths and millions of spatial pixels. To condense this information into a more interpretable form, it is common to parameterize certain aspects of the spectra that are known to represent compositions of interest. Parameterizations of spectral features are called spectral parameters . Spectral parameters can be combined thematically into red, green, and blue (RGB) images, called browse products , to visualize compositional variation across a surface. Here, we present the Hyperspectral Parameter (HyPyRameter) toolbox: an open-source library, written in Python, to calculate spectral parameters for hyperspectral reflectance data. With the HyPyRameter toolbox, a user can calculate spectral parameters from point spectra or hyperspectral image cubes. Users can take advantage of the native parameters built into the HyPyRameter library, or easily customize the library of parameter formulas with built-in functions to suit the needs of a specific investigation. HyPyRameter can be run with Jupyter notebooks provided on the GitHub repo ( http://github.com/Michael-S-Phillips/HyPyRameter ). HyPyRameter is a flexible tool, installable via Anaconda ( http://anaconda.org/michael--s--phillips/hypyrameter ), with potential for wide-ranging applications to diverse fields including, but not limited to, planetary science, geology, agriculture, and mineral resource exploration.https://doi.org/10.3847/PSJ/ad81f8SpectroscopySurface composition
spellingShingle Michael S. Phillips
Christian Tai Udovicic
Jeffrey E. Moersch
Udit Basu
Christopher W. Hamilton
HyPyRameter: A Python Toolbox to Calculate Spectral Parameters from Hyperspectral Reflectance Data
The Planetary Science Journal
Spectroscopy
Surface composition
title HyPyRameter: A Python Toolbox to Calculate Spectral Parameters from Hyperspectral Reflectance Data
title_full HyPyRameter: A Python Toolbox to Calculate Spectral Parameters from Hyperspectral Reflectance Data
title_fullStr HyPyRameter: A Python Toolbox to Calculate Spectral Parameters from Hyperspectral Reflectance Data
title_full_unstemmed HyPyRameter: A Python Toolbox to Calculate Spectral Parameters from Hyperspectral Reflectance Data
title_short HyPyRameter: A Python Toolbox to Calculate Spectral Parameters from Hyperspectral Reflectance Data
title_sort hypyrameter a python toolbox to calculate spectral parameters from hyperspectral reflectance data
topic Spectroscopy
Surface composition
url https://doi.org/10.3847/PSJ/ad81f8
work_keys_str_mv AT michaelsphillips hypyrameterapythontoolboxtocalculatespectralparametersfromhyperspectralreflectancedata
AT christiantaiudovicic hypyrameterapythontoolboxtocalculatespectralparametersfromhyperspectralreflectancedata
AT jeffreyemoersch hypyrameterapythontoolboxtocalculatespectralparametersfromhyperspectralreflectancedata
AT uditbasu hypyrameterapythontoolboxtocalculatespectralparametersfromhyperspectralreflectancedata
AT christopherwhamilton hypyrameterapythontoolboxtocalculatespectralparametersfromhyperspectralreflectancedata