Numerical Investigation of Effect of Nozzle Upper Divergent Angle on Asymmetric Rectangular Section Ejector

Ejectors, as widely utilized devices in the field of industrial energy conservation, exhibit a performance that is significantly affected by their structural parameters. However, the study of the influence of nozzle geometry parameters on asymmetric ejector performance is still limited. In this pape...

Full description

Saved in:
Bibliographic Details
Main Authors: Manfei Lu, Jingming Dong, Chi Feng, Shuaiyu Song, Miao Zhang, Runfa Wang
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/27/3/312
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ejectors, as widely utilized devices in the field of industrial energy conservation, exhibit a performance that is significantly affected by their structural parameters. However, the study of the influence of nozzle geometry parameters on asymmetric ejector performance is still limited. In this paper, the effect of the nozzle upper divergent angle on the operating characteristics of an asymmetric rectangular section ejector was comprehensively investigated. The results indicated that the entrainment ratio gradually decreased with an increase in the nozzle upper divergent angle, and the maximum decrease could be 20%. At the same time, the relationship between the upper and lower divergent angles was closely linked to the trend of change in the secondary fluid mass flow rate. The analysis of flow characteristics found that the deflection of the central jet was caused by the pressure difference between the walls of the upper and lower divergent sections of the nozzle. Additionally, quantitative analysis of the development of the mixing layer showed that the mass flow rate of the secondary fluid inlet was related to the development of the mixing boundary. Shock wave analysis demonstrated that the deterioration in ejector performance was due to the reduction in the shock wave strength caused by Mach reflection and the increase in the Mach stem height.
ISSN:1099-4300