BerryPortraits: Phenotyping Of Ripening Traits in cranberry (Vaccinium macrocarpon Ait.) with YOLOv8

Abstract BerryPortraits (Phenotyping of Ripening Traits) is open source Python-based image-analysis software that rapidly detects and segments berries and extracts morphometric data on fruit quality traits such as berry color, size, shape, and uniformity. Utilizing the YOLOv8 framework and community...

Full description

Saved in:
Bibliographic Details
Main Authors: Jenyne Loarca, Tyr Wiesner-Hanks, Hector Lopez-Moreno, Andrew F. Maule, Michael Liou, Maria Alejandra Torres-Meraz, Luis Diaz-Garcia, Jennifer Johnson-Cicalese, Jeffrey Neyhart, James Polashock, Gina M. Sideli, Christopher F. Strock, Craig T. Beil, Moira J. Sheehan, Massimo Iorizzo, Amaya Atucha, Juan Zalapa
Format: Article
Language:English
Published: BMC 2024-11-01
Series:Plant Methods
Subjects:
Online Access:https://doi.org/10.1186/s13007-024-01285-1
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832594690602434560
author Jenyne Loarca
Tyr Wiesner-Hanks
Hector Lopez-Moreno
Andrew F. Maule
Michael Liou
Maria Alejandra Torres-Meraz
Luis Diaz-Garcia
Jennifer Johnson-Cicalese
Jeffrey Neyhart
James Polashock
Gina M. Sideli
Christopher F. Strock
Craig T. Beil
Moira J. Sheehan
Massimo Iorizzo
Amaya Atucha
Juan Zalapa
author_facet Jenyne Loarca
Tyr Wiesner-Hanks
Hector Lopez-Moreno
Andrew F. Maule
Michael Liou
Maria Alejandra Torres-Meraz
Luis Diaz-Garcia
Jennifer Johnson-Cicalese
Jeffrey Neyhart
James Polashock
Gina M. Sideli
Christopher F. Strock
Craig T. Beil
Moira J. Sheehan
Massimo Iorizzo
Amaya Atucha
Juan Zalapa
author_sort Jenyne Loarca
collection DOAJ
description Abstract BerryPortraits (Phenotyping of Ripening Traits) is open source Python-based image-analysis software that rapidly detects and segments berries and extracts morphometric data on fruit quality traits such as berry color, size, shape, and uniformity. Utilizing the YOLOv8 framework and community-developed, actively-maintained Python libraries such as OpenCV, BerryPortraits software was trained on 512 postharvest images (taken under controlled lighting conditions) of phenotypically diverse cranberry populations (Vaccinium macrocarpon Ait.) from the two largest public cranberry breeding programs in the U.S. The implementation of CIELAB, an intuitive and perceptually uniform color space, enables differentiation between berry color and berry brightness, which are confounded in classic RGB color channel measurements. Furthermore, computer vision enables precise and quantifiable color phenotyping, thus facilitating inclusion of researchers and data analysts with color vision deficiency. BerryPortraits is a phenotyping tool for researchers in plant breeding, plant genetics, horticulture, food science, plant physiology, plant pathology, and related fields. BerryPortraits has strong potential applications for other specialty crops such as blueberry, lingonberry, caneberry, grape, and more. As an open source phenotyping tool based on widely-used python libraries, BerryPortraits allows anyone to use, fork, modify, optimize, and embed this software into other tools or pipelines.
format Article
id doaj-art-56865f1a509c4bb79553b41173547ac3
institution Kabale University
issn 1746-4811
language English
publishDate 2024-11-01
publisher BMC
record_format Article
series Plant Methods
spelling doaj-art-56865f1a509c4bb79553b41173547ac32025-01-19T12:25:14ZengBMCPlant Methods1746-48112024-11-0120111910.1186/s13007-024-01285-1BerryPortraits: Phenotyping Of Ripening Traits in cranberry (Vaccinium macrocarpon Ait.) with YOLOv8Jenyne Loarca0Tyr Wiesner-Hanks1Hector Lopez-Moreno2Andrew F. Maule3Michael Liou4Maria Alejandra Torres-Meraz5Luis Diaz-Garcia6Jennifer Johnson-Cicalese7Jeffrey Neyhart8James Polashock9Gina M. Sideli10Christopher F. Strock11Craig T. Beil12Moira J. Sheehan13Massimo Iorizzo14Amaya Atucha15Juan Zalapa16Department of Plant and Agroecosystem Sciences, University of Wisconsin-MadisonCornell University-Breeding InsightDepartment of Plant and Agroecosystem Sciences, University of Wisconsin-MadisonDepartment of Plant and Agroecosystem Sciences, University of Wisconsin-MadisonDepartment of Statistics, University of Wisconsin-MadisonDepartment of Plant and Agroecosystem Sciences, University of Wisconsin-MadisonDepartment of Plant and Agroecosystem Sciences, University of Wisconsin-MadisonPhillip E. Marucci Center for Blueberry and Cranberry Research & ExtensionPhillip E. Marucci Center for Blueberry and Cranberry Research & ExtensionPhillip E. Marucci Center for Blueberry and Cranberry Research & ExtensionPhillip E. Marucci Center for Blueberry and Cranberry Research & ExtensionCornell University-Breeding InsightCornell University-Breeding InsightCornell University-Breeding InsightDepartment of Horticultural Science, North Carolina State UniversityDepartment of Plant and Agroecosystem Sciences, University of Wisconsin-MadisonDepartment of Plant and Agroecosystem Sciences, University of Wisconsin-MadisonAbstract BerryPortraits (Phenotyping of Ripening Traits) is open source Python-based image-analysis software that rapidly detects and segments berries and extracts morphometric data on fruit quality traits such as berry color, size, shape, and uniformity. Utilizing the YOLOv8 framework and community-developed, actively-maintained Python libraries such as OpenCV, BerryPortraits software was trained on 512 postharvest images (taken under controlled lighting conditions) of phenotypically diverse cranberry populations (Vaccinium macrocarpon Ait.) from the two largest public cranberry breeding programs in the U.S. The implementation of CIELAB, an intuitive and perceptually uniform color space, enables differentiation between berry color and berry brightness, which are confounded in classic RGB color channel measurements. Furthermore, computer vision enables precise and quantifiable color phenotyping, thus facilitating inclusion of researchers and data analysts with color vision deficiency. BerryPortraits is a phenotyping tool for researchers in plant breeding, plant genetics, horticulture, food science, plant physiology, plant pathology, and related fields. BerryPortraits has strong potential applications for other specialty crops such as blueberry, lingonberry, caneberry, grape, and more. As an open source phenotyping tool based on widely-used python libraries, BerryPortraits allows anyone to use, fork, modify, optimize, and embed this software into other tools or pipelines.https://doi.org/10.1186/s13007-024-01285-1Computer visionDigital phenotypingImage-based phenotypingImage segmentationPlant breedingPomology
spellingShingle Jenyne Loarca
Tyr Wiesner-Hanks
Hector Lopez-Moreno
Andrew F. Maule
Michael Liou
Maria Alejandra Torres-Meraz
Luis Diaz-Garcia
Jennifer Johnson-Cicalese
Jeffrey Neyhart
James Polashock
Gina M. Sideli
Christopher F. Strock
Craig T. Beil
Moira J. Sheehan
Massimo Iorizzo
Amaya Atucha
Juan Zalapa
BerryPortraits: Phenotyping Of Ripening Traits in cranberry (Vaccinium macrocarpon Ait.) with YOLOv8
Plant Methods
Computer vision
Digital phenotyping
Image-based phenotyping
Image segmentation
Plant breeding
Pomology
title BerryPortraits: Phenotyping Of Ripening Traits in cranberry (Vaccinium macrocarpon Ait.) with YOLOv8
title_full BerryPortraits: Phenotyping Of Ripening Traits in cranberry (Vaccinium macrocarpon Ait.) with YOLOv8
title_fullStr BerryPortraits: Phenotyping Of Ripening Traits in cranberry (Vaccinium macrocarpon Ait.) with YOLOv8
title_full_unstemmed BerryPortraits: Phenotyping Of Ripening Traits in cranberry (Vaccinium macrocarpon Ait.) with YOLOv8
title_short BerryPortraits: Phenotyping Of Ripening Traits in cranberry (Vaccinium macrocarpon Ait.) with YOLOv8
title_sort berryportraits phenotyping of ripening traits in cranberry vaccinium macrocarpon ait with yolov8
topic Computer vision
Digital phenotyping
Image-based phenotyping
Image segmentation
Plant breeding
Pomology
url https://doi.org/10.1186/s13007-024-01285-1
work_keys_str_mv AT jenyneloarca berryportraitsphenotypingofripeningtraitsincranberryvacciniummacrocarponaitwithyolov8
AT tyrwiesnerhanks berryportraitsphenotypingofripeningtraitsincranberryvacciniummacrocarponaitwithyolov8
AT hectorlopezmoreno berryportraitsphenotypingofripeningtraitsincranberryvacciniummacrocarponaitwithyolov8
AT andrewfmaule berryportraitsphenotypingofripeningtraitsincranberryvacciniummacrocarponaitwithyolov8
AT michaelliou berryportraitsphenotypingofripeningtraitsincranberryvacciniummacrocarponaitwithyolov8
AT mariaalejandratorresmeraz berryportraitsphenotypingofripeningtraitsincranberryvacciniummacrocarponaitwithyolov8
AT luisdiazgarcia berryportraitsphenotypingofripeningtraitsincranberryvacciniummacrocarponaitwithyolov8
AT jenniferjohnsoncicalese berryportraitsphenotypingofripeningtraitsincranberryvacciniummacrocarponaitwithyolov8
AT jeffreyneyhart berryportraitsphenotypingofripeningtraitsincranberryvacciniummacrocarponaitwithyolov8
AT jamespolashock berryportraitsphenotypingofripeningtraitsincranberryvacciniummacrocarponaitwithyolov8
AT ginamsideli berryportraitsphenotypingofripeningtraitsincranberryvacciniummacrocarponaitwithyolov8
AT christopherfstrock berryportraitsphenotypingofripeningtraitsincranberryvacciniummacrocarponaitwithyolov8
AT craigtbeil berryportraitsphenotypingofripeningtraitsincranberryvacciniummacrocarponaitwithyolov8
AT moirajsheehan berryportraitsphenotypingofripeningtraitsincranberryvacciniummacrocarponaitwithyolov8
AT massimoiorizzo berryportraitsphenotypingofripeningtraitsincranberryvacciniummacrocarponaitwithyolov8
AT amayaatucha berryportraitsphenotypingofripeningtraitsincranberryvacciniummacrocarponaitwithyolov8
AT juanzalapa berryportraitsphenotypingofripeningtraitsincranberryvacciniummacrocarponaitwithyolov8