Super Twisted Sliding Mode Observer for Enhancing Ventilation Drive Performance

Ventilation systems are susceptible to errors, external disruptions, and nonlinear dynamics. Maintaining stable operation and regulating these dynamics require an efficient control system. This study focuses on the speed control of ventilation systems using a super twisted sliding mode observer (STS...

Full description

Saved in:
Bibliographic Details
Main Authors: Prince, Byungun Yoon
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/9/4927
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ventilation systems are susceptible to errors, external disruptions, and nonlinear dynamics. Maintaining stable operation and regulating these dynamics require an efficient control system. This study focuses on the speed control of ventilation systems using a super twisted sliding mode observer (STSMO), which provides robust and efficient state estimation for sensorless control. Traditional SM control methods are resistant to parameter fluctuations and external disturbances but are affected by chattering, which degrades performance and can cause mechanical wear. The STSMO leverages the super twisted algorithm, a second-order SM technique, to minimize chattering while ensuring finite-time convergence and high resilience. In sensorless setups, rotor speed and flux cannot be measured directly, making their accurate estimation crucial for effective ventilation drive control. The STSMO enables real-time control by providing current and voltage estimations. It delivers precise rotor flux and speed estimations across varying motor specifications and load conditions using continuous control rules and observer-based techniques. This paper outlines the mathematical formulation of the STSMO, highlighting its noise resistance, chattering reduction, and rapid convergence. Simulation and experimental findings confirm that the proposed observer enhances sensorless ventilation performance, making it ideal for industrial applications requiring reliability, cost-effectiveness, and accuracy.
ISSN:2076-3417