Neural correlates of device-based sleep characteristics in adolescents
Summary: Understanding the brain mechanisms underlying adolescent sleep patterns and their impact on psychophysiological development is complex. We applied sparse canonical correlation analysis (sCCA) to data from 3,222 adolescents in the Adolescent Brain Cognitive Development (ABCD) study, integrat...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-05-01
|
| Series: | Cell Reports |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2211124725003365 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Summary: Understanding the brain mechanisms underlying adolescent sleep patterns and their impact on psychophysiological development is complex. We applied sparse canonical correlation analysis (sCCA) to data from 3,222 adolescents in the Adolescent Brain Cognitive Development (ABCD) study, integrating sleep characteristics with multimodal imaging. This reveals two key sleep-brain dimensions: one linking later sleep onset and shorter duration to decreased subcortical-cortical connectivity and another associating a higher heart rate and shorter light sleep with lower brain volumes and connectivity. Hierarchical clustering identifies three biotypes: biotype 1 has delayed, shorter sleep with a higher heart rate; biotype 3 has earlier, longer sleep with a lower heart rate; and biotype 2 is intermediate. These biotypes also differ in cognitive performance and brain structure and function. Longitudinal analysis confirms these differences from ages 9 to 14, with biotype 3 showing consistent cognitive advantages. Our findings offer insights into optimizing sleep routines for better cognitive development. |
|---|---|
| ISSN: | 2211-1247 |