The Two-Thirds Power Law Derived from a Higher-Derivative Action

The two-thirds power law is a link between angular speed <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula> and curvature <inline-formula>...

Full description

Saved in:
Bibliographic Details
Main Authors: Nicolas Boulanger, Fabien Buisseret, Frédéric Dierick, Olivier White
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Physics
Subjects:
Online Access:https://www.mdpi.com/2624-8174/6/4/77
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The two-thirds power law is a link between angular speed <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula> and curvature <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>κ</mi></semantics></math></inline-formula> observed in voluntary human movements: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula> is proportional to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>κ</mi><mrow><mn>2</mn><mo>/</mo><mn>3</mn></mrow></msup></semantics></math></inline-formula>. Squared jerk is known to be a Lagrangian leading to the latter law. However, it leads to unbounded movements and is therefore incompatible with quasi-periodic dynamics, such as the movement of the tip of a pen drawing ellipses. To solve this drawback, we give a class of higher-derivative Lagrangians that allow for both quasi-periodic and unbounded movements, and at the same time lead to the two-thirds power law. The current study extends this framework and investigates a wider class of Lagrangians admitting generalised conservation laws.
ISSN:2624-8174