Segmentation-Assisted Fusion-Based Classification for Automated CXR Image Analysis

Accurate classification of chest X-ray (CXR) images is crucial for diagnosing lung diseases in medical imaging. Existing deep learning models for CXR image classification face challenges in distinguishing non-lung features. In this work, we propose a new segmentation-assisted fusion-based classifica...

Full description

Saved in:
Bibliographic Details
Main Authors: Shilu Kang, Dongfang Li, Jiaxin Xu, Aokun Mei, Hua Huo
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/15/4580
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Accurate classification of chest X-ray (CXR) images is crucial for diagnosing lung diseases in medical imaging. Existing deep learning models for CXR image classification face challenges in distinguishing non-lung features. In this work, we propose a new segmentation-assisted fusion-based classification method. The method involves two stages: first, we use a lightweight segmentation model, Partial Convolutional Segmentation Network (PCSNet) designed based on an encoder–decoder architecture, to accurately obtain lung masks from CXR images. Then, a fusion of the masked CXR image with the original image enables classification using the improved lightweight ShuffleNetV2 model. The proposed method is trained and evaluated on segmentation datasets including the Montgomery County Dataset (MC) and Shenzhen Hospital Dataset (SH), and classification datasets such as Chest X-Ray Images for Pneumonia (CXIP) and COVIDx. Compared with seven segmentation models (U-Net, Attention-Net, SegNet, FPNNet, DANet, DMNet, and SETR), five classification models (ResNet34, ResNet50, DenseNet121, Swin-Transforms, and ShuffleNetV2), and state-of-the-art methods, our PCSNet model achieved high segmentation performance on CXR images. Compared to the state-of-the-art Attention-Net model, the accuracy of PCSNet increased by 0.19% (98.94% vs. 98.75%), and the boundary accuracy improved by 0.3% (97.86% vs. 97.56%), while requiring 62% fewer parameters. For pneumonia classification using the CXIP dataset, the proposed strategy outperforms the current best model by 0.14% in accuracy (98.55% vs. 98.41%). For COVID-19 classification with the COVIDx dataset, the model reached an accuracy of 97.50%, the absolute improvement in accuracy compared to CovXNet was 0.1%, and clinical metrics demonstrate more significant gains: specificity increased from 94.7% to 99.5%. These results highlight the model’s effectiveness in medical image analysis, demonstrating clinically meaningful improvements over state-of-the-art approaches.
ISSN:1424-8220