Effect of vinylene carbonate additive in polyacrylate-based polymer electrolytes for high-voltage lithium-metal batteries

Solid polymer electrolytes (SPEs) have attracted considerable attention for solid-state lithium-metal batteries (LMBs) with high energy density and enhanced safety for future applications. In this study, an SPE was developed based on a poly(ethyl acrylate) (PEA) polymer matrix with the vinylene carb...

Full description

Saved in:
Bibliographic Details
Main Authors: Lulu Ren, Peichao Zou, Lei Wang, Yaqi Jing, Huolin L. Xin
Format: Article
Language:English
Published: Tsinghua University Press 2024-12-01
Series:Energy Materials and Devices
Subjects:
Online Access:https://www.sciopen.com/article/10.26599/EMD.2024.9370049
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Solid polymer electrolytes (SPEs) have attracted considerable attention for solid-state lithium-metal batteries (LMBs) with high energy density and enhanced safety for future applications. In this study, an SPE was developed based on a poly(ethyl acrylate) (PEA) polymer matrix with the vinylene carbonate (VC) additive (defined as PEA-VC) for high-voltage solid-state LMBs. Results show that introducing the VC additive into the PEA-based SPE leads to high lithium-ion conductivity (1.57 mS/cm at 22°C), a high lithium-ion transference number (0.73), and a wide electrochemical stability window (up to 4.9 V vs. Li/Li+). The remarkable compatibility of the PEA-VC SPE with lithium metal anodes and high-voltage cathodes was demonstrated in Li//Li symmetric cells (800 h lifetime at a current density of 0.1 mA/cm2 at 22°C) and Li//LiNi0.8Mn0.1Co0.1O2 (NMC811) full cells (with a capacity retention of 77.8% after 100 cycles at 0.2C). The improved stability is attributed to the introduction of the VC additive, which helps form a robust cathode–electrolyte interphase, effectively suppressing parasitic interface side reactions. Overall, this study highlights the role of VC additives in high-voltage and solid-state LMBs, offering a general yet effective approach for addressing the interfacial instability issue through an additive-engineering strategy.
ISSN:3005-3315
3005-3064