The origin and maintenance of supergenes contributing to ecological adaptation in Atlantic herring
Abstract Chromosomal inversions are associated with local adaptation in many species. However, questions regarding how they are formed, maintained and impact various other evolutionary processes remain elusive. Here, using a large genomic dataset of long-read and short-read sequencing, we ask these...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2024-10-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-024-53079-7 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850203550940921856 |
|---|---|
| author | Minal Jamsandekar Mafalda S. Ferreira Mats E. Pettersson Edward D. Farrell Brian W. Davis Leif Andersson |
| author_facet | Minal Jamsandekar Mafalda S. Ferreira Mats E. Pettersson Edward D. Farrell Brian W. Davis Leif Andersson |
| author_sort | Minal Jamsandekar |
| collection | DOAJ |
| description | Abstract Chromosomal inversions are associated with local adaptation in many species. However, questions regarding how they are formed, maintained and impact various other evolutionary processes remain elusive. Here, using a large genomic dataset of long-read and short-read sequencing, we ask these questions in one of the most abundant vertebrates on Earth, the Atlantic herring. This species has four megabase-sized inversions associated with ecological adaptation that correlate with water temperature. The S and N inversion alleles at these four loci dominate in the southern and northern parts, respectively, of the species distribution in the North Atlantic Ocean. By determining breakpoint coordinates of the four inversions and the structural variations surrounding them, we hypothesize that these inversions are formed by ectopic recombination between duplicated sequences immediately outside of the inversions. We show that these are old inversions (>1 MY), albeit formed after the split between the Atlantic herring and its sister species, the Pacific herring. There is evidence for extensive gene flux between inversion alleles at all four loci. The large Ne of herring combined with the common occurrence of opposite homozygotes across the species distribution has allowed effective purifying selection to prevent the accumulation of genetic load and repeats within the inversions. |
| format | Article |
| id | doaj-art-55bbfc9ad98d47a296383c18ff46dd21 |
| institution | OA Journals |
| issn | 2041-1723 |
| language | English |
| publishDate | 2024-10-01 |
| publisher | Nature Portfolio |
| record_format | Article |
| series | Nature Communications |
| spelling | doaj-art-55bbfc9ad98d47a296383c18ff46dd212025-08-20T02:11:29ZengNature PortfolioNature Communications2041-17232024-10-0115111910.1038/s41467-024-53079-7The origin and maintenance of supergenes contributing to ecological adaptation in Atlantic herringMinal Jamsandekar0Mafalda S. Ferreira1Mats E. Pettersson2Edward D. Farrell3Brian W. Davis4Leif Andersson5Department of Veterinary Integrative Biosciences, Texas A&M UniversityDepartment of Medical Biochemistry and Microbiology, Uppsala UniversityDepartment of Medical Biochemistry and Microbiology, Uppsala UniversityKillybegs Fishermen’s OrganisationDepartment of Veterinary Integrative Biosciences, Texas A&M UniversityDepartment of Veterinary Integrative Biosciences, Texas A&M UniversityAbstract Chromosomal inversions are associated with local adaptation in many species. However, questions regarding how they are formed, maintained and impact various other evolutionary processes remain elusive. Here, using a large genomic dataset of long-read and short-read sequencing, we ask these questions in one of the most abundant vertebrates on Earth, the Atlantic herring. This species has four megabase-sized inversions associated with ecological adaptation that correlate with water temperature. The S and N inversion alleles at these four loci dominate in the southern and northern parts, respectively, of the species distribution in the North Atlantic Ocean. By determining breakpoint coordinates of the four inversions and the structural variations surrounding them, we hypothesize that these inversions are formed by ectopic recombination between duplicated sequences immediately outside of the inversions. We show that these are old inversions (>1 MY), albeit formed after the split between the Atlantic herring and its sister species, the Pacific herring. There is evidence for extensive gene flux between inversion alleles at all four loci. The large Ne of herring combined with the common occurrence of opposite homozygotes across the species distribution has allowed effective purifying selection to prevent the accumulation of genetic load and repeats within the inversions.https://doi.org/10.1038/s41467-024-53079-7 |
| spellingShingle | Minal Jamsandekar Mafalda S. Ferreira Mats E. Pettersson Edward D. Farrell Brian W. Davis Leif Andersson The origin and maintenance of supergenes contributing to ecological adaptation in Atlantic herring Nature Communications |
| title | The origin and maintenance of supergenes contributing to ecological adaptation in Atlantic herring |
| title_full | The origin and maintenance of supergenes contributing to ecological adaptation in Atlantic herring |
| title_fullStr | The origin and maintenance of supergenes contributing to ecological adaptation in Atlantic herring |
| title_full_unstemmed | The origin and maintenance of supergenes contributing to ecological adaptation in Atlantic herring |
| title_short | The origin and maintenance of supergenes contributing to ecological adaptation in Atlantic herring |
| title_sort | origin and maintenance of supergenes contributing to ecological adaptation in atlantic herring |
| url | https://doi.org/10.1038/s41467-024-53079-7 |
| work_keys_str_mv | AT minaljamsandekar theoriginandmaintenanceofsupergenescontributingtoecologicaladaptationinatlanticherring AT mafaldasferreira theoriginandmaintenanceofsupergenescontributingtoecologicaladaptationinatlanticherring AT matsepettersson theoriginandmaintenanceofsupergenescontributingtoecologicaladaptationinatlanticherring AT edwarddfarrell theoriginandmaintenanceofsupergenescontributingtoecologicaladaptationinatlanticherring AT brianwdavis theoriginandmaintenanceofsupergenescontributingtoecologicaladaptationinatlanticherring AT leifandersson theoriginandmaintenanceofsupergenescontributingtoecologicaladaptationinatlanticherring AT minaljamsandekar originandmaintenanceofsupergenescontributingtoecologicaladaptationinatlanticherring AT mafaldasferreira originandmaintenanceofsupergenescontributingtoecologicaladaptationinatlanticherring AT matsepettersson originandmaintenanceofsupergenescontributingtoecologicaladaptationinatlanticherring AT edwarddfarrell originandmaintenanceofsupergenescontributingtoecologicaladaptationinatlanticherring AT brianwdavis originandmaintenanceofsupergenescontributingtoecologicaladaptationinatlanticherring AT leifandersson originandmaintenanceofsupergenescontributingtoecologicaladaptationinatlanticherring |