Reduction of Carbon Footprint in Mechanical Engineering Production Using a Universal Simulation Model
The paper presents the design and development of a universal simulation model named SustainSIM, intended for optimizing the carbon footprint in mechanical engineering production. The objective of this model is to enable enterprises to accurately quantify, monitor, and simulate CO<sub>2</sub...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/10/5358 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The paper presents the design and development of a universal simulation model named SustainSIM, intended for optimizing the carbon footprint in mechanical engineering production. The objective of this model is to enable enterprises to accurately quantify, monitor, and simulate CO<sub>2</sub> emissions generated during various manufacturing processes, thereby identifying and evaluating effective reduction strategies. The paper thoroughly examines methodologies for data collection and processing, determination of emission factors, and categorization of emissions (Scope 1 and Scope 2), utilizing standards such as the GHG Protocol and associated databases. Through a digital simulation environment created in Unity Engine, the model interactively visualizes the impacts of implementing green technologies—such as solar panels, electric vehicles, and heat pumps—on reducing the overall carbon footprint. The practical applicability of the model was validated using a mechanical engineering company as a case study, where simulations confirmed the model’s potential in supporting sustainable decision-making and production process optimization. The findings suggest that the implementation of such a tool can significantly contribute to environmentally responsible management and the reduction of industrial emissions. In comparison to existing methods such as SimaPro/OpenLCA (detailed LCA) and the Corporate Calculator (GHG Protocol), SustainSIM achieves the same accuracy in calculating Scopes 1/2, while reducing the analysis time to less than 15% and decreasing the requirements for expertise. Unlike simulation packages like Energy Plus, users can modify parameters without scripting, and they can see the immediate impact in CO<sub>2</sub>e. |
|---|---|
| ISSN: | 2076-3417 |