Diurnal Variation of Seasonal Precipitation over the CONUS: A Comparison of Gauge Observations with TRMM Data

Diurnal variation of precipitation is a fundamental periodic signal of local climate. Comprehensive study of diurnal variation of precipitation is helpful in studying the formation of local climate and validating satellite precipitation products. In this study, a comparison is drawn between precipit...

Full description

Saved in:
Bibliographic Details
Main Authors: Liming Zhu, Yu Zhao, Xiaoping Rui, Qingwei Wei
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Advances in Meteorology
Online Access:http://dx.doi.org/10.1155/2020/8859993
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Diurnal variation of precipitation is a fundamental periodic signal of local climate. Comprehensive study of diurnal variation of precipitation is helpful in studying the formation of local climate and validating satellite precipitation products. In this study, a comparison is drawn between precipitation gauge observations and Tropical Rainfall Measuring Mission (TRMM) 3B42 data on diurnal variation of precipitation. First, using the K-means clustering algorithm, stations with gauge observations and pixels with TRMM data are divided into different groups according to the diurnal variation of precipitation, respectively. In each group, the stations have similar diurnal variation of precipitation. Then maps of diurnal variation of precipitation for gauge observations and TRMM data are obtained. According to these maps, the diurnal variation of precipitation over the contiguous United States (CONUS) presents seasonal variability in both gauge observations and TRMM data. In addition, the diurnal variation of precipitation shows clustered features in space. However, the spatial patterns of the obtained maps do not match, and the TRMM satellite data perform poorly in capturing the hourly precipitation event. Finally, the possible mechanism behind the prevailing nocturnal precipitation over the middle of the CONUS is discussed, with the prevailing nocturnal precipitation judged likely to be strongly related to the mountain-plains solenoid (MPS) circulation.
ISSN:1687-9309
1687-9317