Retraction Note: Multiclass skin lesion classification using deep learning networks optimal information fusion

Saved in:
Bibliographic Details
Main Authors: Muhammad Attique Khan, Ameer Hamza, Mohammad Shabaz, Seifeine Kadry, Saddaf Rubab, Muhammad Abdullah Bilal, Muhammad Naeem Akbar, Suresh Manic Kesavan
Format: Article
Language:English
Published: Springer 2025-01-01
Series:Discover Applied Sciences
Online Access:https://doi.org/10.1007/s42452-025-06466-8
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841544356501127168
author Muhammad Attique Khan
Ameer Hamza
Mohammad Shabaz
Seifeine Kadry
Saddaf Rubab
Muhammad Abdullah Bilal
Muhammad Naeem Akbar
Suresh Manic Kesavan
author_facet Muhammad Attique Khan
Ameer Hamza
Mohammad Shabaz
Seifeine Kadry
Saddaf Rubab
Muhammad Abdullah Bilal
Muhammad Naeem Akbar
Suresh Manic Kesavan
author_sort Muhammad Attique Khan
collection DOAJ
format Article
id doaj-art-5598abab7b3e44c8a5abb36a8336f699
institution Kabale University
issn 3004-9261
language English
publishDate 2025-01-01
publisher Springer
record_format Article
series Discover Applied Sciences
spelling doaj-art-5598abab7b3e44c8a5abb36a8336f6992025-01-12T12:35:00ZengSpringerDiscover Applied Sciences3004-92612025-01-01711110.1007/s42452-025-06466-8Retraction Note: Multiclass skin lesion classification using deep learning networks optimal information fusionMuhammad Attique Khan0Ameer Hamza1Mohammad Shabaz2Seifeine Kadry3Saddaf Rubab4Muhammad Abdullah Bilal5Muhammad Naeem Akbar6Suresh Manic Kesavan7Department of Computer Science, HITEC UniversityDepartment of Computer Science, HITEC UniversityModel Institute of Engineering and TechnologyDepartment of Applied Data Science, Noroff University CollegeDepartment of Computer Engineering, College of Computing and Informatics, University of SharjahDepartment of CS, SEECS NUSTNational University of Sciences and Technology (NUST)Department of Electrical and Communication Engineering, National University of Science and Technologyhttps://doi.org/10.1007/s42452-025-06466-8
spellingShingle Muhammad Attique Khan
Ameer Hamza
Mohammad Shabaz
Seifeine Kadry
Saddaf Rubab
Muhammad Abdullah Bilal
Muhammad Naeem Akbar
Suresh Manic Kesavan
Retraction Note: Multiclass skin lesion classification using deep learning networks optimal information fusion
Discover Applied Sciences
title Retraction Note: Multiclass skin lesion classification using deep learning networks optimal information fusion
title_full Retraction Note: Multiclass skin lesion classification using deep learning networks optimal information fusion
title_fullStr Retraction Note: Multiclass skin lesion classification using deep learning networks optimal information fusion
title_full_unstemmed Retraction Note: Multiclass skin lesion classification using deep learning networks optimal information fusion
title_short Retraction Note: Multiclass skin lesion classification using deep learning networks optimal information fusion
title_sort retraction note multiclass skin lesion classification using deep learning networks optimal information fusion
url https://doi.org/10.1007/s42452-025-06466-8
work_keys_str_mv AT muhammadattiquekhan retractionnotemulticlassskinlesionclassificationusingdeeplearningnetworksoptimalinformationfusion
AT ameerhamza retractionnotemulticlassskinlesionclassificationusingdeeplearningnetworksoptimalinformationfusion
AT mohammadshabaz retractionnotemulticlassskinlesionclassificationusingdeeplearningnetworksoptimalinformationfusion
AT seifeinekadry retractionnotemulticlassskinlesionclassificationusingdeeplearningnetworksoptimalinformationfusion
AT saddafrubab retractionnotemulticlassskinlesionclassificationusingdeeplearningnetworksoptimalinformationfusion
AT muhammadabdullahbilal retractionnotemulticlassskinlesionclassificationusingdeeplearningnetworksoptimalinformationfusion
AT muhammadnaeemakbar retractionnotemulticlassskinlesionclassificationusingdeeplearningnetworksoptimalinformationfusion
AT sureshmanickesavan retractionnotemulticlassskinlesionclassificationusingdeeplearningnetworksoptimalinformationfusion