Series Arc Fault Detection Based on Improved Artificial Hummingbird Algorithm Optimizer Optimized XGBoost

Based on the wide variety of electrical appliances, it is difficult to detect similar current waveforms when different appliances experience arc faults due to insufficient extraction of fault arc characteristics and low detection accuracy. To address these issues, a series arc fault detection method...

Full description

Saved in:
Bibliographic Details
Main Authors: Lichun Qi, Takahiro Kawaguchi, Seiji Hashimoto
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/12/6861
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Based on the wide variety of electrical appliances, it is difficult to detect similar current waveforms when different appliances experience arc faults due to insufficient extraction of fault arc characteristics and low detection accuracy. To address these issues, a series arc fault detection method combining artificial hummingbird algorithm (AHA) and XGboost has been proposed. According to GB14287.4—2014, an experimental platform for fault arcs was designed and built to collect fault arc signals. By leveraging the global search capability and dynamic adaptive mechanism of AHA, key feature subsets sensitive to arcs are selected from high-dimensional time–frequency domain features. Combining the parallel computing advantages and regularization strategies of XGBoost, a low-complexity, highly interpretable fault classification model is constructed. The hyperparameters of XGBoost are simultaneously optimized by AHA. Experimental results show that the proposed method achieves a fault arc detection accuracy rate of 98.098%, effectively identifying series arc faults.
ISSN:2076-3417