The Kangaroo’s First Hop: The Early Fast Cooling Phase of EP250108a/SN 2025kg
Fast X-ray transients are a rare and poorly understood population of events. Previously difficult to detect in real time, the launch of the Einstein Probe with its Wide-field X-ray Telescope has led to a rapid expansionof the sample and allowed the exploration of these transients across the electrom...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
IOP Publishing
2025-01-01
|
| Series: | The Astrophysical Journal Letters |
| Subjects: | |
| Online Access: | https://doi.org/10.3847/2041-8213/ade1d9 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Fast X-ray transients are a rare and poorly understood population of events. Previously difficult to detect in real time, the launch of the Einstein Probe with its Wide-field X-ray Telescope has led to a rapid expansionof the sample and allowed the exploration of these transients across the electromagnetic spectrum. EP250108a is a recently detected example linked to an optical counterpart, SN 2025kg, or “the kangaroo.” Together with a companion Letter we present our observing campaign and analysis of this event. In this letter, we focus on the early evolution of the optical counterpart over the first 6 days, including our measurement of the redshift of z = 0.17641. We compare to other supernovae and fast transients showing similar features, finding significant similarities with SN 2006aj and SN 2020bvc, and show that the source is well modelled by a rapidly expanding cooling blackbody. We show the observed X-ray and radio properties are consistent with a collapsar-powered jet that is low energy (≲10 ^51 erg) and/or fails to break out of the dense material surrounding it. While we examine the possibility that the optical emission emerges from the shock produced as the supernova ejecta expand into a dense shell of circumstellar material, due to our X-ray and radio inferences, we favour a model where it arises from a shocked cocoon resulting from a trapped jet. This makes SN 2025 one of the few examples of this currently observationally rare event. |
|---|---|
| ISSN: | 2041-8205 |