Residual Stress Distribution and Its Effect on Fatigue Crack Path of Laser Powder Bed Fusion Ti6Al4V Alloy

Residual stress (RS) in laser powder bed fusion (LPBF) additive manufactured structures can significantly affect mechanical performance, potentially leading to premature failure. The complex distribution of residual stresses, combined with the limitations of full-field measurement techniques, presen...

Full description

Saved in:
Bibliographic Details
Main Authors: Wenbo Sun, Yu’e Ma, Peiyao Li, Weihong Zhang
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Aerospace
Subjects:
Online Access:https://www.mdpi.com/2226-4310/12/2/103
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Residual stress (RS) in laser powder bed fusion (LPBF) additive manufactured structures can significantly affect mechanical performance, potentially leading to premature failure. The complex distribution of residual stresses, combined with the limitations of full-field measurement techniques, presents a substantial challenge in conducting damage tolerance analyses of aircraft structures. To address these challenges, this study developed a comprehensive simulation framework to analyze the 3D distribution of residual stresses and fatigue crack growth in LPBF parts. The 3D residual stress profiles of as-built samples in 15° and 75° build directions were computed and compared to experimental data. The fatigue crack propagation behavior of the 75° sample, considering 3D residual stress, was predicted, and the effects of residual stress redistribution under cyclic loading were discussed. It shows that the anisotropy of residual stress, influenced by the build direction, can lead to mixed-mode fracture and subsequent crack deflection. Tensile residual stress in the near-surface region and compressive stress in the inner region can cause an inverted elliptical crack front and accelerate fatigue crack growth.
ISSN:2226-4310