Graphene-modified g-C3N4/ α-Fe2O3 systems for light-induced hydrogen generation

Photocatalysis represents an advanced and efficient technology for harnessing light energy. The non-toxicity, affordability, and versatility of this technique render it particularly attractive for hydrogen production via water splitting. Nevertheless, the primary challenge lies in identifying materi...

Full description

Saved in:
Bibliographic Details
Main Authors: Wassila Touati, Miroslava Filip Edelmannová, Mohamed Karmaoui, Ahmed Bekka, Clarisse Furgeaud, Chakib Alaoui, Imene kadi Allah, Bruno Figueiredo, J.A. Labrincha, Raul Arenal, Kamila Koci, David Maria Tobaldi
Format: Article
Language:English
Published: Elsevier 2025-04-01
Series:Carbon Trends
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2667056925000410
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850155271225081856
author Wassila Touati
Miroslava Filip Edelmannová
Mohamed Karmaoui
Ahmed Bekka
Clarisse Furgeaud
Chakib Alaoui
Imene kadi Allah
Bruno Figueiredo
J.A. Labrincha
Raul Arenal
Kamila Koci
David Maria Tobaldi
author_facet Wassila Touati
Miroslava Filip Edelmannová
Mohamed Karmaoui
Ahmed Bekka
Clarisse Furgeaud
Chakib Alaoui
Imene kadi Allah
Bruno Figueiredo
J.A. Labrincha
Raul Arenal
Kamila Koci
David Maria Tobaldi
author_sort Wassila Touati
collection DOAJ
description Photocatalysis represents an advanced and efficient technology for harnessing light energy. The non-toxicity, affordability, and versatility of this technique render it particularly attractive for hydrogen production via water splitting. Nevertheless, the primary challenge lies in identifying materials capable of efficiently catalyzing the water splitting reaction upon exposure to light. This study presents the influence of the quantity of hematite and graphene on g-C3N4 in the context of hydrogen generation from methanol-water decomposition under UVC irradiation. Pure g-C3N4 exhibits the highest hydrogen generation efficiency. However, adding hematite decreases photocatalytic efficiency, likely due to the formation of a type II heterojunction between α-Fe2O3 and g-C3N4, which reduces the overall reduction capacity of the system. While incorporating graphene into the g-C3N4/α-Fe2O3 system enhances photocatalytic efficiency by improving electron mobility and prolonging the lifetime of photo-generated excitons, the highest yield was achieved with BUF10/GNP0.5. This research offers valuable insights into charge transfer and separation processes for photo-generated excitons within the g-C3N4/α-Fe2O3 and g-C3N4/α-Fe2O3/graphene systems in the context of light-induced hydrogen production.
format Article
id doaj-art-5534463c4cb645baae784ffbeda8d796
institution OA Journals
issn 2667-0569
language English
publishDate 2025-04-01
publisher Elsevier
record_format Article
series Carbon Trends
spelling doaj-art-5534463c4cb645baae784ffbeda8d7962025-08-20T02:24:58ZengElsevierCarbon Trends2667-05692025-04-011910049110.1016/j.cartre.2025.100491Graphene-modified g-C3N4/ α-Fe2O3 systems for light-induced hydrogen generationWassila Touati0Miroslava Filip Edelmannová1Mohamed Karmaoui2Ahmed Bekka3Clarisse Furgeaud4Chakib Alaoui5Imene kadi Allah6Bruno Figueiredo7J.A. Labrincha8Raul Arenal9Kamila Koci10David Maria Tobaldi11Laboratoire de Chimie des Matériaux Inorganiques Et Applications, Faculté de Chimie, Université des Sciences Et de la Technologie d'Oran, El-Mnaouer, Algeria; Corresponding authors.Institute of Environmental Technology, CEET,VŠB-Technical University of Ostrava, 17.listopadu 15/2172, Ostrava-Poruba, 70800, Czech RepublicLaboratoire de Chimie des Matériaux Inorganiques Et Applications, Faculté de Chimie, Université des Sciences Et de la Technologie d'Oran, El-Mnaouer, Algeria; Department of Materials and Ceramic Engineering/CICECO−Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, PortugalLaboratoire de Chimie des Matériaux Inorganiques Et Applications, Faculté de Chimie, Université des Sciences Et de la Technologie d'Oran, El-Mnaouer, AlgeriaInstituto de Nanociencia y Materiales de Aragon (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; Laboratorio de microscopias avanzadas (LMA), U. Zaragoza, C/ Mariano Esquillor s/n, 50018 Zaragoza, SpainLaboratoire de Chimie des Matériaux Inorganiques Et Applications, Faculté de Chimie, Université des Sciences Et de la Technologie d'Oran, El-Mnaouer, AlgeriaLaboratoire de Chimie des Matériaux Inorganiques Et Applications, Faculté de Chimie, Université des Sciences Et de la Technologie d'Oran, El-Mnaouer, AlgeriaGraphenest, Lugar da Estação, Edifício Vouga Park, 3740-070, Paradela do Vouga, PortugalDepartment of Materials and Ceramic Engineering/CICECO−Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, PortugalInstituto de Nanociencia y Materiales de Aragon (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; Laboratorio de microscopias avanzadas (LMA), U. Zaragoza, C/ Mariano Esquillor s/n, 50018 Zaragoza, Spain; ARAID Foundation, 50018 Zaragoza, SpainInstitute of Environmental Technology, CEET,VŠB-Technical University of Ostrava, 17.listopadu 15/2172, Ostrava-Poruba, 70800, Czech Republic; Corresponding authors.CNR NANOTEC Institute of Nanotechnology, Via Monteroni, Lecce 73100, ItalyPhotocatalysis represents an advanced and efficient technology for harnessing light energy. The non-toxicity, affordability, and versatility of this technique render it particularly attractive for hydrogen production via water splitting. Nevertheless, the primary challenge lies in identifying materials capable of efficiently catalyzing the water splitting reaction upon exposure to light. This study presents the influence of the quantity of hematite and graphene on g-C3N4 in the context of hydrogen generation from methanol-water decomposition under UVC irradiation. Pure g-C3N4 exhibits the highest hydrogen generation efficiency. However, adding hematite decreases photocatalytic efficiency, likely due to the formation of a type II heterojunction between α-Fe2O3 and g-C3N4, which reduces the overall reduction capacity of the system. While incorporating graphene into the g-C3N4/α-Fe2O3 system enhances photocatalytic efficiency by improving electron mobility and prolonging the lifetime of photo-generated excitons, the highest yield was achieved with BUF10/GNP0.5. This research offers valuable insights into charge transfer and separation processes for photo-generated excitons within the g-C3N4/α-Fe2O3 and g-C3N4/α-Fe2O3/graphene systems in the context of light-induced hydrogen production.http://www.sciencedirect.com/science/article/pii/S2667056925000410Water splittingg-C3N4/ α-Fe2O3g-C3N4/ α-Fe2O3/graphenePhotocatalysis
spellingShingle Wassila Touati
Miroslava Filip Edelmannová
Mohamed Karmaoui
Ahmed Bekka
Clarisse Furgeaud
Chakib Alaoui
Imene kadi Allah
Bruno Figueiredo
J.A. Labrincha
Raul Arenal
Kamila Koci
David Maria Tobaldi
Graphene-modified g-C3N4/ α-Fe2O3 systems for light-induced hydrogen generation
Carbon Trends
Water splitting
g-C3N4/ α-Fe2O3
g-C3N4/ α-Fe2O3/graphene
Photocatalysis
title Graphene-modified g-C3N4/ α-Fe2O3 systems for light-induced hydrogen generation
title_full Graphene-modified g-C3N4/ α-Fe2O3 systems for light-induced hydrogen generation
title_fullStr Graphene-modified g-C3N4/ α-Fe2O3 systems for light-induced hydrogen generation
title_full_unstemmed Graphene-modified g-C3N4/ α-Fe2O3 systems for light-induced hydrogen generation
title_short Graphene-modified g-C3N4/ α-Fe2O3 systems for light-induced hydrogen generation
title_sort graphene modified g c3n4 α fe2o3 systems for light induced hydrogen generation
topic Water splitting
g-C3N4/ α-Fe2O3
g-C3N4/ α-Fe2O3/graphene
Photocatalysis
url http://www.sciencedirect.com/science/article/pii/S2667056925000410
work_keys_str_mv AT wassilatouati graphenemodifiedgc3n4afe2o3systemsforlightinducedhydrogengeneration
AT miroslavafilipedelmannova graphenemodifiedgc3n4afe2o3systemsforlightinducedhydrogengeneration
AT mohamedkarmaoui graphenemodifiedgc3n4afe2o3systemsforlightinducedhydrogengeneration
AT ahmedbekka graphenemodifiedgc3n4afe2o3systemsforlightinducedhydrogengeneration
AT clarissefurgeaud graphenemodifiedgc3n4afe2o3systemsforlightinducedhydrogengeneration
AT chakibalaoui graphenemodifiedgc3n4afe2o3systemsforlightinducedhydrogengeneration
AT imenekadiallah graphenemodifiedgc3n4afe2o3systemsforlightinducedhydrogengeneration
AT brunofigueiredo graphenemodifiedgc3n4afe2o3systemsforlightinducedhydrogengeneration
AT jalabrincha graphenemodifiedgc3n4afe2o3systemsforlightinducedhydrogengeneration
AT raularenal graphenemodifiedgc3n4afe2o3systemsforlightinducedhydrogengeneration
AT kamilakoci graphenemodifiedgc3n4afe2o3systemsforlightinducedhydrogengeneration
AT davidmariatobaldi graphenemodifiedgc3n4afe2o3systemsforlightinducedhydrogengeneration