A Highly Sensitive Low-Temperature N-Butanol Gas Sensor Based on a Co-Doped MOF-ZnO Nanomaterial Under UV Excitation
Volatile organic compounds (VOCs) are presently posing a rather considerable threat to both human health and environmental sustainability. Among these, n-butanol is commonly identified as bringing potential hazards to environmental integrity and individual health. This study presents the creation of...
Saved in:
| Main Authors: | , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Sensors |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1424-8220/25/14/4480 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Volatile organic compounds (VOCs) are presently posing a rather considerable threat to both human health and environmental sustainability. Among these, n-butanol is commonly identified as bringing potential hazards to environmental integrity and individual health. This study presents the creation of a highly sensitive n-butanol gas sensor utilizing cobalt-doped zinc oxide (ZnO) derived from a metal–organic framework (MOF). A series of x-Co/MOF-ZnO (x = 1, 3, 5, 7 wt%) nanomaterials with varying Co ratios were generated using the homogeneous co-precipitation method and assessed for their gas-sensing performances under a low operating temperature (191 °C) and UV excitation (220 mW/cm<sup>2</sup>). These findings demonstrated that the 5-Co/MOF-ZnO sensor presented the highest oxygen vacancy (O<sub>v</sub>) concentration and the largest specific surface area (SSA), representing the optimal reactivity, selectivity, and durability for n-butanol detection. Regarding the sensor’s response to 100 ppm n-butanol under UV excitation, it achieved a value of 1259.06, 9.80 times greater than that of pure MOF-ZnO (128.56) and 2.07 times higher than that in darkness (608.38). Additionally, under UV illumination, the sensor achieved a rapid response time (11 s) and recovery rate (23 s). As a strategy to transform the functionality of ZnO-based sensors for n-butanol gas detection, this study also investigated potential possible redox reactions occurring during the detection process. |
|---|---|
| ISSN: | 1424-8220 |