The Development of a Floating Mono-Particle “Sun Shield” to Protect Corals from High Irradiance during Bleaching Conditions

Coral bleaching is occurring more frequently as the climate changes, with multiple mass mortality events recently recorded on the Great Barrier Reef. Thermal stress coupled with high irradiance have previously been shown to be primary causes for coral bleaching. Therefore, a reduction in either of t...

Full description

Saved in:
Bibliographic Details
Main Authors: Joel M. P. Scofield, Emma L. Prime, Florita Flores, Andrea Severati, Mathieu Mongin, Elodie Bougeot, Mark E. Baird, Andrew P. Negri, Greg G. Qiao
Format: Article
Language:English
Published: MDPI AG 2024-10-01
Series:Journal of Marine Science and Engineering
Subjects:
Online Access:https://www.mdpi.com/2077-1312/12/10/1809
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Coral bleaching is occurring more frequently as the climate changes, with multiple mass mortality events recently recorded on the Great Barrier Reef. Thermal stress coupled with high irradiance have previously been shown to be primary causes for coral bleaching. Therefore, a reduction in either of these pressures could reduce coral stress and eventual bleaching. Herein, we report the early development of a novel technology capable of reducing the amount of light entering a water body by ~20% in open ocean conditions. This mono-particle “sun shield” consists of an ultra-thin monolayer material and reflective calcium carbonate particles. The monolayer enables spreading of the particles into a thin film across the water surface, with only small amounts of material needed: 7.1 g/m<sup>2</sup>. A numerical modelling case study of residence times and the build-up of reactive oxygen stress in corals showed that the successful application of a stable film over the Lizard Island reef flat could reduce the reactive oxygen stress to below bleaching levels across approximately 1.5 km<sup>2</sup> of reef area. With further development, mono-particle films such as this have the potential to be deployed over at-risk coral reefs at relatively small scales during predicted heatwave conditions, potentially reducing the severity of bleaching on coral reefs.
ISSN:2077-1312