Cutting NiTi with Femtosecond Laser

Superelastic shape memory alloys are difficult to machine by thermal processes due to the facility for Ti oxidation and by mechanical processes due to their superelastic behavior. In this study, femtosecond lasers were tested to analyze the potential for machining NiTi since femtosecond lasers allow...

Full description

Saved in:
Bibliographic Details
Main Authors: L. Quintino, L. Liu, R. M. Miranda, R. J. C. Silva, A. Hu, Y. Zhou
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:Advances in Materials Science and Engineering
Online Access:http://dx.doi.org/10.1155/2013/198434
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Superelastic shape memory alloys are difficult to machine by thermal processes due to the facility for Ti oxidation and by mechanical processes due to their superelastic behavior. In this study, femtosecond lasers were tested to analyze the potential for machining NiTi since femtosecond lasers allow nonthermal processing of materials by ablation. The effect of processing parameters on machining depth was studied, and material removal rates were computed. Surfaces produced were analyzed under SEM which shows a resolidified thin layer with minimal heat affected zones. However, for high cutting speeds, that is, for short interaction times, this layer was not observed. A depletion of Ni was seen which may be beneficial in biomedical applications since Ni is known to produce human tissue reactions in biophysical environments.
ISSN:1687-8434
1687-8442