Tribological Investigation of Plasma-Based Coatings for Use in Quasi-Monolithic Engine Cylinder Bores

This study evaluates the tribological characteristics of quasi-monolithic engine cylinder coatings and piston rings using a custom-built linear reciprocating tribometer. The coatings were deposited on an Al-Si alloy cylinder bore using the Plasma Transfer Wire Arc (PTWA) and Electrolytic Jet Plasma...

Full description

Saved in:
Bibliographic Details
Main Authors: Siddharth Banerjee, Joshua Stroh, Dimitry Sediako, Jimi Tjong
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/15/4/370
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study evaluates the tribological characteristics of quasi-monolithic engine cylinder coatings and piston rings using a custom-built linear reciprocating tribometer. The coatings were deposited on an Al-Si alloy cylinder bore using the Plasma Transfer Wire Arc (PTWA) and Electrolytic Jet Plasma Oxidation (EJPO) processes. The coatings’ tribological performances were investigated in the boundary lubrication regime. The performance of conventional chrome-coated cast iron piston rings was tested and compared to that of EJPO- and PTWA-coated engine cylinder samples that were extracted from a cast Al-Si engine block. Scanning electron microscopy and profilometry were used to compare the evolution of wear and the prevalent wear mechanism. This paper also presents the verification and repeatability analysis of a custom-built tribometer against a standard industry-calibrated tribometer. The wear test results showed that the EJPO coating had 0.05% to 10.35% lower wear rates than its PTWA counterpart throughout a wide range of loading conditions and sliding distances. The variation in the counter-face behavior is likely due to the different surface topographic parameters such as skewness, kurtosis, and porosity.
ISSN:2075-4701