Prediction and Prevention of Edge Waves in Continuous Cold Forming of Thick-Wall High-Strength Welded Pipe

In order to reduce the edge waves and defects of the strip in the forming process and obtain better properties of the strip, it is urgent to establish a better flexible cold forming process. In this paper, a finite element model of the production line was established to simulate the forming process,...

Full description

Saved in:
Bibliographic Details
Main Authors: Shengde Hu, Junhao Zhao, Yu Liu
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/15/4/455
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to reduce the edge waves and defects of the strip in the forming process and obtain better properties of the strip, it is urgent to establish a better flexible cold forming process. In this paper, a finite element model of the production line was established to simulate the forming process, and the effective stress distribution at the corner of the strip was simulated. The effect of cold working hardening was basically consistent with that calculated by the analytical method and tensile test results. A mathematical model of the maximum normal strain along the tangent direction of the strip’s outer edge of each pass was established. With the constraint conditions that the maximum value of the normal strain value of each pass is less than the critical value and the upper and lower limit of the horizontal value of each test factor, and the maximum value of the normal strain of each pass as the goal, the number of cold forming passes, the bending angle of each pass and the working roll diameter of the roll have been determined. The optimized process parameters were used in the simulations. No edge wave at the strip edge and no “Bauschinger effect” in forming before high-frequency induction welding was found. The method proposed in this paper can optimize the key process parameters before the production line is put into operation, minimize the possible buckling of the strip edge during the forming process, and reduce the possible loss caused by design defects.
ISSN:2075-4701