A Safe and Efficient Global Path-Planning Method Considering Multiple Environmental Factors of the Moon Using a Distributed Computation Strategy
Lunar-rover path planning is a key topic in lunar exploration research, with safety and computational efficiency critical for achieving long-distance planning. This paper proposes a distributed path-planning method that considers multiple lunar environmental factors, addressing the issues of inadequ...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Remote Sensing |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2072-4292/17/5/924 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Lunar-rover path planning is a key topic in lunar exploration research, with safety and computational efficiency critical for achieving long-distance planning. This paper proposes a distributed path-planning method that considers multiple lunar environmental factors, addressing the issues of inadequate safety considerations and low computational efficiency in current research. First, a set of safety evaluation rules is constructed by considering factors such as terrain slope, roughness, illumination, and rock abundance. Second, a distributed path-planning strategy based on a safety-map tile pyramid (DPPS-STP) is proposed, using a weighted A* algorithm with hash table-based open and closed lists (OC-WHT-A*) on a Spark cluster for efficient and safer path planning. Additionally, high-resolution digital orthophoto maps (DOM) are utilized for small crater detection, enabling more refined path planning built upon the overall mission-planning result. The method was validated in four lunar regions with distinct characteristics. The results show that DPPS-STP, which considers multiple environmental factors, effectively reduces the number of hazardous nodes and avoids crater obstacles. For long-distance tasks, it achieves an average speedup of up to 11.5 times compared to the single-machine OC-WHT-A*, significantly improving computational efficiency. |
|---|---|
| ISSN: | 2072-4292 |