Development of the E-Portal for the Design of Freeform Varifocal Lenses Using Shiny/R Programming Combined with Additive Manufacturing
This paper presents an interactive online e-portal development and application using Shiny/R version 4.4.0 programming for personalised varifocal lens surface design and manufacturing in an agile and responsive manner. Varifocal lenses are specialised lenses that provide clear vision at both far and...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Machines |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-1702/13/4/298 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper presents an interactive online e-portal development and application using Shiny/R version 4.4.0 programming for personalised varifocal lens surface design and manufacturing in an agile and responsive manner. Varifocal lenses are specialised lenses that provide clear vision at both far and near distances. The user interface (UI) of the e-portal application creates an environment for customers to input their eye prescription data and geometric parameters to visualise the result of the designed freeform varifocal lens surface, which includes interactive 2D contour plots and 3D-rendered diagrams for both left and right eyes simultaneously. The e-portal provides a unified interactive platform where users can simultaneously access both the specialised Copilot demo web for lenses and the main Shiny/R version 4.4.0 programming app, ensuring seamless integration and an efficient process flow. Additionally, the data points of the 3D-designed surface are automatically saved. In order to check the performance of the designed varifocal lens before production, it is remodelled in the COMSOL Multiphysics 6.2 modelling and analysis environment. Ray tracing is built in the environment for the lens design assessment and is then integrated with the lens additive manufacturing (AM) using a Formlabs 3D printer (Digital Fabrication Center (DFC), London, UK). The results are then analysed to further validate the e-portal-driven personalised design and manufacturing approach. |
|---|---|
| ISSN: | 2075-1702 |