Impact of Heat Stress on Gene Expression in the Hypothalamic–Pituitary–Ovarian Axis of Hu Sheep
Heat stress (HS) is a major environmental factor negatively impacting the reproductive performance of livestock. This study investigates the molecular mechanisms of heat stress on the hypothalamic–pituitary–ovarian (HPO) axis in Hu sheep. A heat-stressed animal model was established, and high-throug...
Saved in:
| Main Authors: | , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Animals |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-2615/15/15/2189 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Heat stress (HS) is a major environmental factor negatively impacting the reproductive performance of livestock. This study investigates the molecular mechanisms of heat stress on the hypothalamic–pituitary–ovarian (HPO) axis in Hu sheep. A heat-stressed animal model was established, and high-throughput RNA sequencing (RNA-seq) was employed to analyze gene expression in the hypothalamus, pituitary, and ovarian tissues of both control and heat-stressed groups. The results revealed significant changes in estrus behavior, hormone secretion, and reproductive health in heat-stressed sheep, with a shortened estrus duration, prolonged estrous cycles, and decreased levels of FSH, LH, E<sub>2</sub>, and P4. A total of 520, 649, and 482 differentially expressed genes (DEGs) were identified in the hypothalamus, pituitary, and ovary, respectively. The DEGs were enriched in pathways related to hormone secretion, neurotransmission, cell proliferation, and immune response, with significant involvement of the p53 and cAMP signaling pathways. Tissue-specific responses to heat stress were observed, with distinct regulatory roles in each organ, including GPCR activity and cytokine signaling in the hypothalamus, calcium-regulated exocytosis in the pituitary, and cilium assembly and ATP binding in the ovary. Key genes such as <i>SYN3</i>, <i>RPH3A</i>, and <i>IGFBP2</i> were identified as central to the coordinated regulation of the HPO axis. These findings provide new insights into the molecular basis of heat stress-induced impairments in reproductive function—manifested by altered estrous behavior, reduced hormone secretion (FSH, LH, E<sub>2</sub>, and P4), and disrupted gene expression in the hypothalamic–pituitary–ovarian (HPO) axis—and offer potential targets for improving heat tolerance and reproductive regulation in sheep. |
|---|---|
| ISSN: | 2076-2615 |