Gene Expression Changes in Venous Segment of Overflow Arteriovenous Fistula

Aim. The objective of this study was to characterize coordinated molecular changes in the structure and composition of the walls of venous segments of arteriovenous (AV) fistulas evoked by overflow. Methods. Venous tissue samples were collected from 6 hemodialysis patients with AV fistulas exposed t...

Full description

Saved in:
Bibliographic Details
Main Authors: Yasuhiro Hashimoto, Akiko Okamoto, Hisao Saitoh, Shingo Hatakeyama, Takahiro Yoneyama, Takuya Koie, Chikara Ohyama
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:International Journal of Nephrology
Online Access:http://dx.doi.org/10.1155/2013/980923
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aim. The objective of this study was to characterize coordinated molecular changes in the structure and composition of the walls of venous segments of arteriovenous (AV) fistulas evoked by overflow. Methods. Venous tissue samples were collected from 6 hemodialysis patients with AV fistulas exposed to overflow and from the normal cephalic veins of 4 other hemodialysis patients. Total RNA was extracted from the venous tissue samples, and gene expression between the 2 groups was compared using Whole Human Genome DNA microarray 44 K. Microarray data were analyzed by GeneSpring GX software and Ingenuity Pathway Analysis. Results. The cDNA microarray analysis identified 397 upregulated genes and 456 downregulated genes. Gene ontology analysis with GeneSpring GX software revealed that biological developmental processes and glycosaminoglycan binding were the most upregulated. In addition, most upregulation occurred extracellularly. In the pathway analysis, the TGF beta signaling pathway, cytokines and inflammatory response pathway, hypertrophy model, and the myometrial relaxation and contraction pathway were significantly upregulated compared with the control cephalic vein. Conclusion. Combining microarray results and pathway information available via the Internet provided biological insight into the structure and composition of the venous wall of overflow AV fistulas.
ISSN:2090-214X
2090-2158