Epiregulon: Single-cell transcription factor activity inference to predict drug response and drivers of cell states

Abstract Transcription factors (TFs) and transcriptional coregulators are emerging therapeutic targets. Gene regulatory networks (GRNs) can evaluate pharmacological agents and identify drivers of disease, but methods that rely solely on gene expression often neglect post-transcriptional modulation o...

Full description

Saved in:
Bibliographic Details
Main Authors: Tomasz Włodarczyk, Aaron Lun, Diana Wu, Minyi Shi, Xiaofen Ye, Shreya Menon, Shushan Toneyan, Kerstin Seidel, Liang Wang, Jenille Tan, Shang-Yang Chen, Timothy Keyes, Aleksander Chlebowski, Adrian Waddell, Wei Zhou, Yangmeng Wang, Qiuyue Yuan, Yu Guo, Liang-Fu Chen, Bence Daniel, Antonina Hafner, Meng He, Alejandro Chibly, Yuxin Liang, Zhana Duren, Ciara Metcalfe, Marc Hafner, Christian W. Siebel, M. Ryan Corces, Robert Yauch, Shiqi Xie, Xiaosai Yao
Format: Article
Language:English
Published: Nature Portfolio 2025-08-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-62252-5
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849764573149659136
author Tomasz Włodarczyk
Aaron Lun
Diana Wu
Minyi Shi
Xiaofen Ye
Shreya Menon
Shushan Toneyan
Kerstin Seidel
Liang Wang
Jenille Tan
Shang-Yang Chen
Timothy Keyes
Aleksander Chlebowski
Adrian Waddell
Wei Zhou
Yangmeng Wang
Qiuyue Yuan
Yu Guo
Liang-Fu Chen
Bence Daniel
Antonina Hafner
Meng He
Alejandro Chibly
Yuxin Liang
Zhana Duren
Ciara Metcalfe
Marc Hafner
Christian W. Siebel
M. Ryan Corces
Robert Yauch
Shiqi Xie
Xiaosai Yao
author_facet Tomasz Włodarczyk
Aaron Lun
Diana Wu
Minyi Shi
Xiaofen Ye
Shreya Menon
Shushan Toneyan
Kerstin Seidel
Liang Wang
Jenille Tan
Shang-Yang Chen
Timothy Keyes
Aleksander Chlebowski
Adrian Waddell
Wei Zhou
Yangmeng Wang
Qiuyue Yuan
Yu Guo
Liang-Fu Chen
Bence Daniel
Antonina Hafner
Meng He
Alejandro Chibly
Yuxin Liang
Zhana Duren
Ciara Metcalfe
Marc Hafner
Christian W. Siebel
M. Ryan Corces
Robert Yauch
Shiqi Xie
Xiaosai Yao
author_sort Tomasz Włodarczyk
collection DOAJ
description Abstract Transcription factors (TFs) and transcriptional coregulators are emerging therapeutic targets. Gene regulatory networks (GRNs) can evaluate pharmacological agents and identify drivers of disease, but methods that rely solely on gene expression often neglect post-transcriptional modulation of TFs. We present Epiregulon, a method that constructs GRNs from single-cell ATAC-seq and RNA-seq data for accurate prediction of TF activity. This is achieved by considering the co-occurrence of TF expression and chromatin accessibility at TF binding sites in each cell. ChIP-seq data allows motif-agonistic activity inference of transcriptional coregulators or TF harboring neomorphic mutations. Epiregulon accurately predicted the effects of AR inhibition across different drug modalities including an AR antagonist and an AR degrader, delineated the mechanisms of a SMARCA4 degrader by identifying context-dependent interaction partners, and prioritized drivers of lineage reprogramming and tumorigenesis. By mapping gene regulation across various cellular contexts, Epiregulon can accelerate the discovery of therapeutics targeting transcriptional regulators.
format Article
id doaj-art-53fa3c668ce24fe99d473eb2c80afac3
institution DOAJ
issn 2041-1723
language English
publishDate 2025-08-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-53fa3c668ce24fe99d473eb2c80afac32025-08-20T03:05:06ZengNature PortfolioNature Communications2041-17232025-08-0116111910.1038/s41467-025-62252-5Epiregulon: Single-cell transcription factor activity inference to predict drug response and drivers of cell statesTomasz Włodarczyk0Aaron Lun1Diana Wu2Minyi Shi3Xiaofen Ye4Shreya Menon5Shushan Toneyan6Kerstin Seidel7Liang Wang8Jenille Tan9Shang-Yang Chen10Timothy Keyes11Aleksander Chlebowski12Adrian Waddell13Wei Zhou14Yangmeng Wang15Qiuyue Yuan16Yu Guo17Liang-Fu Chen18Bence Daniel19Antonina Hafner20Meng He21Alejandro Chibly22Yuxin Liang23Zhana Duren24Ciara Metcalfe25Marc Hafner26Christian W. Siebel27M. Ryan Corces28Robert Yauch29Shiqi Xie30Xiaosai Yao31gRED Computational Sciences, Genentech IncgRED Computational Sciences, Genentech IncDiscovery Oncology, Genentech IncProteomic & Genomic Technologies, Genentech IncDiscovery Oncology, Genentech IncGladstone Institute of Neurological Disease, Gladstone InstitutesgRED Computational Sciences, Genentech IncDiscovery Oncology, Genentech IncDiscovery Oncology, Genentech IncDiscovery Oncology, Genentech IncgRED Computational Sciences, Genentech IncgRED Computational Sciences, Genentech IncgRED Computational Sciences, Genentech IncgRED Computational Sciences, Genentech IncDiscovery Oncology, Genentech IncTranslational Medicine Oncology, Genentech IncCenter for Human Genetics, Department of Genetics and Biochemistry, Clemson UniversitygRED Computational Sciences, Genentech IncDiscovery Oncology, Genentech IncProteomic & Genomic Technologies, Genentech IncDiscovery Oncology, Genentech IncTranslational Medicine Oncology, Genentech IncgRED Computational Sciences, Genentech IncProteomic & Genomic Technologies, Genentech IncCenter for Human Genetics, Department of Genetics and Biochemistry, Clemson UniversityDiscovery Oncology, Genentech IncgRED Computational Sciences, Genentech IncDiscovery Oncology, Genentech IncGladstone Institute of Neurological Disease, Gladstone InstitutesDiscovery Oncology, Genentech IncDiscovery Oncology, Genentech IncgRED Computational Sciences, Genentech IncAbstract Transcription factors (TFs) and transcriptional coregulators are emerging therapeutic targets. Gene regulatory networks (GRNs) can evaluate pharmacological agents and identify drivers of disease, but methods that rely solely on gene expression often neglect post-transcriptional modulation of TFs. We present Epiregulon, a method that constructs GRNs from single-cell ATAC-seq and RNA-seq data for accurate prediction of TF activity. This is achieved by considering the co-occurrence of TF expression and chromatin accessibility at TF binding sites in each cell. ChIP-seq data allows motif-agonistic activity inference of transcriptional coregulators or TF harboring neomorphic mutations. Epiregulon accurately predicted the effects of AR inhibition across different drug modalities including an AR antagonist and an AR degrader, delineated the mechanisms of a SMARCA4 degrader by identifying context-dependent interaction partners, and prioritized drivers of lineage reprogramming and tumorigenesis. By mapping gene regulation across various cellular contexts, Epiregulon can accelerate the discovery of therapeutics targeting transcriptional regulators.https://doi.org/10.1038/s41467-025-62252-5
spellingShingle Tomasz Włodarczyk
Aaron Lun
Diana Wu
Minyi Shi
Xiaofen Ye
Shreya Menon
Shushan Toneyan
Kerstin Seidel
Liang Wang
Jenille Tan
Shang-Yang Chen
Timothy Keyes
Aleksander Chlebowski
Adrian Waddell
Wei Zhou
Yangmeng Wang
Qiuyue Yuan
Yu Guo
Liang-Fu Chen
Bence Daniel
Antonina Hafner
Meng He
Alejandro Chibly
Yuxin Liang
Zhana Duren
Ciara Metcalfe
Marc Hafner
Christian W. Siebel
M. Ryan Corces
Robert Yauch
Shiqi Xie
Xiaosai Yao
Epiregulon: Single-cell transcription factor activity inference to predict drug response and drivers of cell states
Nature Communications
title Epiregulon: Single-cell transcription factor activity inference to predict drug response and drivers of cell states
title_full Epiregulon: Single-cell transcription factor activity inference to predict drug response and drivers of cell states
title_fullStr Epiregulon: Single-cell transcription factor activity inference to predict drug response and drivers of cell states
title_full_unstemmed Epiregulon: Single-cell transcription factor activity inference to predict drug response and drivers of cell states
title_short Epiregulon: Single-cell transcription factor activity inference to predict drug response and drivers of cell states
title_sort epiregulon single cell transcription factor activity inference to predict drug response and drivers of cell states
url https://doi.org/10.1038/s41467-025-62252-5
work_keys_str_mv AT tomaszwłodarczyk epiregulonsinglecelltranscriptionfactoractivityinferencetopredictdrugresponseanddriversofcellstates
AT aaronlun epiregulonsinglecelltranscriptionfactoractivityinferencetopredictdrugresponseanddriversofcellstates
AT dianawu epiregulonsinglecelltranscriptionfactoractivityinferencetopredictdrugresponseanddriversofcellstates
AT minyishi epiregulonsinglecelltranscriptionfactoractivityinferencetopredictdrugresponseanddriversofcellstates
AT xiaofenye epiregulonsinglecelltranscriptionfactoractivityinferencetopredictdrugresponseanddriversofcellstates
AT shreyamenon epiregulonsinglecelltranscriptionfactoractivityinferencetopredictdrugresponseanddriversofcellstates
AT shushantoneyan epiregulonsinglecelltranscriptionfactoractivityinferencetopredictdrugresponseanddriversofcellstates
AT kerstinseidel epiregulonsinglecelltranscriptionfactoractivityinferencetopredictdrugresponseanddriversofcellstates
AT liangwang epiregulonsinglecelltranscriptionfactoractivityinferencetopredictdrugresponseanddriversofcellstates
AT jenilletan epiregulonsinglecelltranscriptionfactoractivityinferencetopredictdrugresponseanddriversofcellstates
AT shangyangchen epiregulonsinglecelltranscriptionfactoractivityinferencetopredictdrugresponseanddriversofcellstates
AT timothykeyes epiregulonsinglecelltranscriptionfactoractivityinferencetopredictdrugresponseanddriversofcellstates
AT aleksanderchlebowski epiregulonsinglecelltranscriptionfactoractivityinferencetopredictdrugresponseanddriversofcellstates
AT adrianwaddell epiregulonsinglecelltranscriptionfactoractivityinferencetopredictdrugresponseanddriversofcellstates
AT weizhou epiregulonsinglecelltranscriptionfactoractivityinferencetopredictdrugresponseanddriversofcellstates
AT yangmengwang epiregulonsinglecelltranscriptionfactoractivityinferencetopredictdrugresponseanddriversofcellstates
AT qiuyueyuan epiregulonsinglecelltranscriptionfactoractivityinferencetopredictdrugresponseanddriversofcellstates
AT yuguo epiregulonsinglecelltranscriptionfactoractivityinferencetopredictdrugresponseanddriversofcellstates
AT liangfuchen epiregulonsinglecelltranscriptionfactoractivityinferencetopredictdrugresponseanddriversofcellstates
AT bencedaniel epiregulonsinglecelltranscriptionfactoractivityinferencetopredictdrugresponseanddriversofcellstates
AT antoninahafner epiregulonsinglecelltranscriptionfactoractivityinferencetopredictdrugresponseanddriversofcellstates
AT menghe epiregulonsinglecelltranscriptionfactoractivityinferencetopredictdrugresponseanddriversofcellstates
AT alejandrochibly epiregulonsinglecelltranscriptionfactoractivityinferencetopredictdrugresponseanddriversofcellstates
AT yuxinliang epiregulonsinglecelltranscriptionfactoractivityinferencetopredictdrugresponseanddriversofcellstates
AT zhanaduren epiregulonsinglecelltranscriptionfactoractivityinferencetopredictdrugresponseanddriversofcellstates
AT ciarametcalfe epiregulonsinglecelltranscriptionfactoractivityinferencetopredictdrugresponseanddriversofcellstates
AT marchafner epiregulonsinglecelltranscriptionfactoractivityinferencetopredictdrugresponseanddriversofcellstates
AT christianwsiebel epiregulonsinglecelltranscriptionfactoractivityinferencetopredictdrugresponseanddriversofcellstates
AT mryancorces epiregulonsinglecelltranscriptionfactoractivityinferencetopredictdrugresponseanddriversofcellstates
AT robertyauch epiregulonsinglecelltranscriptionfactoractivityinferencetopredictdrugresponseanddriversofcellstates
AT shiqixie epiregulonsinglecelltranscriptionfactoractivityinferencetopredictdrugresponseanddriversofcellstates
AT xiaosaiyao epiregulonsinglecelltranscriptionfactoractivityinferencetopredictdrugresponseanddriversofcellstates