Penerapan Metode K-Means Berbasis Jarak untuk Deteksi Kendaraan Bergerak

Deteksi kendaraan bergerak adalah salah satu elemen penting dalam aplikasi Intelligent Transport System (ITS). Deteksi kendaraan bergerak juga merupakan bagian dari pendeteksian benda bergerak. Metode K-Means berhasil diterapkan pada piksel cluster yang tidak diawasi untuk mendeteksi objek bergerak...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuslena Sari, Andreyan Rizky Baskara, Puguh Budi Prakoso
Format: Article
Language:Indonesian
Published: University of Brawijaya 2022-08-01
Series:Jurnal Teknologi Informasi dan Ilmu Komputer
Online Access:https://jtiik.ub.ac.id/index.php/jtiik/article/view/5768
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1823858548231110656
author Yuslena Sari
Andreyan Rizky Baskara
Puguh Budi Prakoso
author_facet Yuslena Sari
Andreyan Rizky Baskara
Puguh Budi Prakoso
author_sort Yuslena Sari
collection DOAJ
description Deteksi kendaraan bergerak adalah salah satu elemen penting dalam aplikasi Intelligent Transport System (ITS). Deteksi kendaraan bergerak juga merupakan bagian dari pendeteksian benda bergerak. Metode K-Means berhasil diterapkan pada piksel cluster yang tidak diawasi untuk mendeteksi objek bergerak. Secara umum, K-Means adalah algoritma heuristik yang mempartisi kumpulan data menjadi K cluster dengan meminimalkan jumlah kuadrat jarak di setiap cluster. Dalam makalah ini, algoritma K-Means menerapkan jarak Euclidean, jarak Manhattan, jarak Canberra, jarak Chebyshev dan jarak Braycurtis. Penelitian ini bertujuan untuk membandingkan dan mengevaluasi implementasi jarak tersebut pada algoritma clustering K-Means. Perbandingan dilakukan dengan basis K-Means yang dinilai dengan berbagai parameter evaluasi yaitu MSE, PSNR, SSIM dan PCQI. Hasilnya menunjukkan bahwa jarak Manhattan memberikan nilai MSE = 1.328 , PSNR = 21.14, SSIM = 0.83 dan PCQI = 0.79 terbaik dibandingkan dengan jarak lainnya. Sedangkan untuk waktu pemrosesan data memperlihatkan bahwa jarak Braycurtis memiliki keunggulan lebih yaitu 0.3 detik.   Abstract Detection moving vehicles is one of important elements in the applications of Intelligent Transport System (ITS). Detection moving vehicles is also part of the detection of moving objects. K-Means method has been successfully applied to unsupervised cluster pixels for the detection of moving objects. In general, K-Means is a heuristic algorithm that partitioned the data set into K clusters by minimizing the number of squared distances in each cluster. In this paper, the K-Means algorithm applies Euclidean distance, Manhattan distance, Canberra distance, Chebyshev distance and Braycurtis distance. The aim of this study is to compare and evaluate the implementation of these distances in the K-Means clustering algorithm. The comparison is done with the basis of K-Means assessed with various evaluation paramaters, namely MSE, PSNR, SSIM and PCQI. The results exhibit that the Manhattan distance delivers the best MSE = 1.328 , PSNR = 21.14, SSIM = 0.83 and PCQI = 0.79 values compared to other distances. Whereas for data processing time exposes that the Braycurtis distance has more advantages  
format Article
id doaj-art-53ec7814c3444b20b60cf8f8f532f998
institution Kabale University
issn 2355-7699
2528-6579
language Indonesian
publishDate 2022-08-01
publisher University of Brawijaya
record_format Article
series Jurnal Teknologi Informasi dan Ilmu Komputer
spelling doaj-art-53ec7814c3444b20b60cf8f8f532f9982025-02-11T10:42:18ZindUniversity of BrawijayaJurnal Teknologi Informasi dan Ilmu Komputer2355-76992528-65792022-08-019410.25126/jtiik.2022945768967Penerapan Metode K-Means Berbasis Jarak untuk Deteksi Kendaraan BergerakYuslena Sari0Andreyan Rizky Baskara1Puguh Budi Prakoso2Universitas Lambung Mangkurat, BanjarmasinUniversitas Lambung Mangkurat, BanjarmasinUniversitas Lambung Mangkurat, Banjarmasin Deteksi kendaraan bergerak adalah salah satu elemen penting dalam aplikasi Intelligent Transport System (ITS). Deteksi kendaraan bergerak juga merupakan bagian dari pendeteksian benda bergerak. Metode K-Means berhasil diterapkan pada piksel cluster yang tidak diawasi untuk mendeteksi objek bergerak. Secara umum, K-Means adalah algoritma heuristik yang mempartisi kumpulan data menjadi K cluster dengan meminimalkan jumlah kuadrat jarak di setiap cluster. Dalam makalah ini, algoritma K-Means menerapkan jarak Euclidean, jarak Manhattan, jarak Canberra, jarak Chebyshev dan jarak Braycurtis. Penelitian ini bertujuan untuk membandingkan dan mengevaluasi implementasi jarak tersebut pada algoritma clustering K-Means. Perbandingan dilakukan dengan basis K-Means yang dinilai dengan berbagai parameter evaluasi yaitu MSE, PSNR, SSIM dan PCQI. Hasilnya menunjukkan bahwa jarak Manhattan memberikan nilai MSE = 1.328 , PSNR = 21.14, SSIM = 0.83 dan PCQI = 0.79 terbaik dibandingkan dengan jarak lainnya. Sedangkan untuk waktu pemrosesan data memperlihatkan bahwa jarak Braycurtis memiliki keunggulan lebih yaitu 0.3 detik.   Abstract Detection moving vehicles is one of important elements in the applications of Intelligent Transport System (ITS). Detection moving vehicles is also part of the detection of moving objects. K-Means method has been successfully applied to unsupervised cluster pixels for the detection of moving objects. In general, K-Means is a heuristic algorithm that partitioned the data set into K clusters by minimizing the number of squared distances in each cluster. In this paper, the K-Means algorithm applies Euclidean distance, Manhattan distance, Canberra distance, Chebyshev distance and Braycurtis distance. The aim of this study is to compare and evaluate the implementation of these distances in the K-Means clustering algorithm. The comparison is done with the basis of K-Means assessed with various evaluation paramaters, namely MSE, PSNR, SSIM and PCQI. The results exhibit that the Manhattan distance delivers the best MSE = 1.328 , PSNR = 21.14, SSIM = 0.83 and PCQI = 0.79 values compared to other distances. Whereas for data processing time exposes that the Braycurtis distance has more advantages   https://jtiik.ub.ac.id/index.php/jtiik/article/view/5768
spellingShingle Yuslena Sari
Andreyan Rizky Baskara
Puguh Budi Prakoso
Penerapan Metode K-Means Berbasis Jarak untuk Deteksi Kendaraan Bergerak
Jurnal Teknologi Informasi dan Ilmu Komputer
title Penerapan Metode K-Means Berbasis Jarak untuk Deteksi Kendaraan Bergerak
title_full Penerapan Metode K-Means Berbasis Jarak untuk Deteksi Kendaraan Bergerak
title_fullStr Penerapan Metode K-Means Berbasis Jarak untuk Deteksi Kendaraan Bergerak
title_full_unstemmed Penerapan Metode K-Means Berbasis Jarak untuk Deteksi Kendaraan Bergerak
title_short Penerapan Metode K-Means Berbasis Jarak untuk Deteksi Kendaraan Bergerak
title_sort penerapan metode k means berbasis jarak untuk deteksi kendaraan bergerak
url https://jtiik.ub.ac.id/index.php/jtiik/article/view/5768
work_keys_str_mv AT yuslenasari penerapanmetodekmeansberbasisjarakuntukdeteksikendaraanbergerak
AT andreyanrizkybaskara penerapanmetodekmeansberbasisjarakuntukdeteksikendaraanbergerak
AT puguhbudiprakoso penerapanmetodekmeansberbasisjarakuntukdeteksikendaraanbergerak