Optimized psilocybin production in tryptophan catabolism‐repressed fungi

Abstract The high therapeutic potential of psilocybin, a prodrug of the psychotropic psilocin, holds great promise for the treatment of mental disorders such as therapy‐refractory depression, alcohol use disorder and anorexia nervosa. Psilocybin has been designated a ‘Breakthrough Therapy’ by the US...

Full description

Saved in:
Bibliographic Details
Main Authors: Slavica Janevska, Sophie Weiser, Ying Huang, Jun Lin, Sandra Hoefgen, Katarina Jojić, Amelia E. Barber, Tim Schäfer, Janis Fricke, Dirk Hoffmeister, Lars Regestein, Vito Valiante, Johann E. Kufs
Format: Article
Language:English
Published: Wiley 2024-11-01
Series:Microbial Biotechnology
Online Access:https://doi.org/10.1111/1751-7915.70039
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850146837282947072
author Slavica Janevska
Sophie Weiser
Ying Huang
Jun Lin
Sandra Hoefgen
Katarina Jojić
Amelia E. Barber
Tim Schäfer
Janis Fricke
Dirk Hoffmeister
Lars Regestein
Vito Valiante
Johann E. Kufs
author_facet Slavica Janevska
Sophie Weiser
Ying Huang
Jun Lin
Sandra Hoefgen
Katarina Jojić
Amelia E. Barber
Tim Schäfer
Janis Fricke
Dirk Hoffmeister
Lars Regestein
Vito Valiante
Johann E. Kufs
author_sort Slavica Janevska
collection DOAJ
description Abstract The high therapeutic potential of psilocybin, a prodrug of the psychotropic psilocin, holds great promise for the treatment of mental disorders such as therapy‐refractory depression, alcohol use disorder and anorexia nervosa. Psilocybin has been designated a ‘Breakthrough Therapy’ by the US Food and Drug Administration, and therefore a sustainable production process must be established to meet future market demands. Here, we present the development of an in vivo psilocybin production chassis based on repression of l‐tryptophan catabolism. We demonstrate the proof of principle in Saccharomyces cerevisiae expressing the psilocybin biosynthetic genes. Deletion of the two aminotransferase genes ARO8/9 and the indoleamine 2,3‐dioxygenase gene BNA2 yielded a fivefold increase of psilocybin titre. We transferred this knowledge to the filamentous fungus Aspergillus nidulans and identified functional ARO8/9 orthologs involved in fungal l‐tryptophan catabolism by genome mining and cross‐complementation. The double deletion mutant of A. nidulans resulted in a 10‐fold increased psilocybin production. Process optimization based on respiratory activity measurements led to a final psilocybin titre of 267 mg/L in batch cultures with a space–time‐yield of 3.7 mg/L/h. These results demonstrate the suitability of our engineered A. nidulans to serve as a production strain for psilocybin and other tryptamine‐derived pharmaceuticals.
format Article
id doaj-art-53d44d76fc64408d9d6a7f5b39599526
institution OA Journals
issn 1751-7915
language English
publishDate 2024-11-01
publisher Wiley
record_format Article
series Microbial Biotechnology
spelling doaj-art-53d44d76fc64408d9d6a7f5b395995262025-08-20T02:27:43ZengWileyMicrobial Biotechnology1751-79152024-11-011711n/an/a10.1111/1751-7915.70039Optimized psilocybin production in tryptophan catabolism‐repressed fungiSlavica Janevska0Sophie Weiser1Ying Huang2Jun Lin3Sandra Hoefgen4Katarina Jojić5Amelia E. Barber6Tim Schäfer7Janis Fricke8Dirk Hoffmeister9Lars Regestein10Vito Valiante11Johann E. Kufs12(Epi‐)Genetic Regulation of Fungal Virulence Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute Jena GermanyBio Pilot Plant Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute Jena GermanyBiobricks of Microbial Natural Product Syntheses Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute Jena GermanyBiobricks of Microbial Natural Product Syntheses Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute Jena GermanyBiobricks of Microbial Natural Product Syntheses Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute Jena GermanyBiobricks of Microbial Natural Product Syntheses Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute Jena GermanyFungal Informatics Friedrich Schiller University Jena GermanyPharmaceutical Microbiology Friedrich Schiller University Jena GermanyPharmaceutical Microbiology Friedrich Schiller University Jena GermanyPharmaceutical Microbiology Friedrich Schiller University Jena GermanyBio Pilot Plant Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute Jena GermanyBiobricks of Microbial Natural Product Syntheses Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute Jena GermanyBio Pilot Plant Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute Jena GermanyAbstract The high therapeutic potential of psilocybin, a prodrug of the psychotropic psilocin, holds great promise for the treatment of mental disorders such as therapy‐refractory depression, alcohol use disorder and anorexia nervosa. Psilocybin has been designated a ‘Breakthrough Therapy’ by the US Food and Drug Administration, and therefore a sustainable production process must be established to meet future market demands. Here, we present the development of an in vivo psilocybin production chassis based on repression of l‐tryptophan catabolism. We demonstrate the proof of principle in Saccharomyces cerevisiae expressing the psilocybin biosynthetic genes. Deletion of the two aminotransferase genes ARO8/9 and the indoleamine 2,3‐dioxygenase gene BNA2 yielded a fivefold increase of psilocybin titre. We transferred this knowledge to the filamentous fungus Aspergillus nidulans and identified functional ARO8/9 orthologs involved in fungal l‐tryptophan catabolism by genome mining and cross‐complementation. The double deletion mutant of A. nidulans resulted in a 10‐fold increased psilocybin production. Process optimization based on respiratory activity measurements led to a final psilocybin titre of 267 mg/L in batch cultures with a space–time‐yield of 3.7 mg/L/h. These results demonstrate the suitability of our engineered A. nidulans to serve as a production strain for psilocybin and other tryptamine‐derived pharmaceuticals.https://doi.org/10.1111/1751-7915.70039
spellingShingle Slavica Janevska
Sophie Weiser
Ying Huang
Jun Lin
Sandra Hoefgen
Katarina Jojić
Amelia E. Barber
Tim Schäfer
Janis Fricke
Dirk Hoffmeister
Lars Regestein
Vito Valiante
Johann E. Kufs
Optimized psilocybin production in tryptophan catabolism‐repressed fungi
Microbial Biotechnology
title Optimized psilocybin production in tryptophan catabolism‐repressed fungi
title_full Optimized psilocybin production in tryptophan catabolism‐repressed fungi
title_fullStr Optimized psilocybin production in tryptophan catabolism‐repressed fungi
title_full_unstemmed Optimized psilocybin production in tryptophan catabolism‐repressed fungi
title_short Optimized psilocybin production in tryptophan catabolism‐repressed fungi
title_sort optimized psilocybin production in tryptophan catabolism repressed fungi
url https://doi.org/10.1111/1751-7915.70039
work_keys_str_mv AT slavicajanevska optimizedpsilocybinproductionintryptophancatabolismrepressedfungi
AT sophieweiser optimizedpsilocybinproductionintryptophancatabolismrepressedfungi
AT yinghuang optimizedpsilocybinproductionintryptophancatabolismrepressedfungi
AT junlin optimizedpsilocybinproductionintryptophancatabolismrepressedfungi
AT sandrahoefgen optimizedpsilocybinproductionintryptophancatabolismrepressedfungi
AT katarinajojic optimizedpsilocybinproductionintryptophancatabolismrepressedfungi
AT ameliaebarber optimizedpsilocybinproductionintryptophancatabolismrepressedfungi
AT timschafer optimizedpsilocybinproductionintryptophancatabolismrepressedfungi
AT janisfricke optimizedpsilocybinproductionintryptophancatabolismrepressedfungi
AT dirkhoffmeister optimizedpsilocybinproductionintryptophancatabolismrepressedfungi
AT larsregestein optimizedpsilocybinproductionintryptophancatabolismrepressedfungi
AT vitovaliante optimizedpsilocybinproductionintryptophancatabolismrepressedfungi
AT johannekufs optimizedpsilocybinproductionintryptophancatabolismrepressedfungi