Advanced Optimization Algorithm Combining a Fuzzy Inference System for Vehicular Communications

The use of a static modulation coding scheme (MCS), such as 7, and resource keep probability (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>P</mi></mrow><...

Full description

Saved in:
Bibliographic Details
Main Authors: Teguh Indra Bayu, Yung-Fa Huang, Jeang-Kuo Chen, Cheng-Hsiung Hsieh, Budhi Kristianto, Erwien Christianto, Suharyadi Suharyadi
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Future Internet
Subjects:
Online Access:https://www.mdpi.com/1999-5903/17/1/46
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832588411934867456
author Teguh Indra Bayu
Yung-Fa Huang
Jeang-Kuo Chen
Cheng-Hsiung Hsieh
Budhi Kristianto
Erwien Christianto
Suharyadi Suharyadi
author_facet Teguh Indra Bayu
Yung-Fa Huang
Jeang-Kuo Chen
Cheng-Hsiung Hsieh
Budhi Kristianto
Erwien Christianto
Suharyadi Suharyadi
author_sort Teguh Indra Bayu
collection DOAJ
description The use of a static modulation coding scheme (MCS), such as 7, and resource keep probability (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>r</mi><mi>k</mi></mrow></msub></mrow></semantics></math></inline-formula>) value, such as 0.8, was proven to be insufficient to achieve the best packet reception ratio (PRR) performance. Various adaptation techniques have been used in the following years. This work introduces a novel optimization algorithm approach called the fuzzy inference reinforcement learning (FIRL) sequence for adaptive parameter configuration in cellular vehicle-to-everything (C-V2X) mode-4 communication networks. This innovative method combines a Sugeno-type fuzzy inference system (FIS) control system with a Q-learning reinforcement learning algorithm to optimize the PRR as the key metric for overall network performance. The FIRL sequence generates adaptive configuration parameters for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>r</mi><mi>k</mi></mrow></msub></mrow></semantics></math></inline-formula> and MCS index values each time the Long-Term Evolution (LTE) packet is generated. Simulation results demonstrate the effectiveness of this optimization algorithm approach, achieving up to a 169.83% improvement in performance compared to static baseline parameters.
format Article
id doaj-art-537f1c6d83ba412bad902727fd380edc
institution Kabale University
issn 1999-5903
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Future Internet
spelling doaj-art-537f1c6d83ba412bad902727fd380edc2025-01-24T13:33:41ZengMDPI AGFuture Internet1999-59032025-01-011714610.3390/fi17010046Advanced Optimization Algorithm Combining a Fuzzy Inference System for Vehicular CommunicationsTeguh Indra Bayu0Yung-Fa Huang1Jeang-Kuo Chen2Cheng-Hsiung Hsieh3Budhi Kristianto4Erwien Christianto5Suharyadi Suharyadi6Faculty of Information Technology, Satya Wacana Christian University, Salatiga 50711, IndonesiaDepartment of Information and Communication Engineering, Chaoyang University of Technology, Taichung 413310, TaiwanDepartment of Information Management, Chaoyang University of Technology, Taichung 413310, TaiwanDepartment of Computer Science and Information Engineering, Chaoyang University of Technology, Taichung 413310, TaiwanFaculty of Information Technology, Satya Wacana Christian University, Salatiga 50711, IndonesiaFaculty of Information Technology, Satya Wacana Christian University, Salatiga 50711, IndonesiaFaculty of Information Technology, Satya Wacana Christian University, Salatiga 50711, IndonesiaThe use of a static modulation coding scheme (MCS), such as 7, and resource keep probability (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>r</mi><mi>k</mi></mrow></msub></mrow></semantics></math></inline-formula>) value, such as 0.8, was proven to be insufficient to achieve the best packet reception ratio (PRR) performance. Various adaptation techniques have been used in the following years. This work introduces a novel optimization algorithm approach called the fuzzy inference reinforcement learning (FIRL) sequence for adaptive parameter configuration in cellular vehicle-to-everything (C-V2X) mode-4 communication networks. This innovative method combines a Sugeno-type fuzzy inference system (FIS) control system with a Q-learning reinforcement learning algorithm to optimize the PRR as the key metric for overall network performance. The FIRL sequence generates adaptive configuration parameters for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>r</mi><mi>k</mi></mrow></msub></mrow></semantics></math></inline-formula> and MCS index values each time the Long-Term Evolution (LTE) packet is generated. Simulation results demonstrate the effectiveness of this optimization algorithm approach, achieving up to a 169.83% improvement in performance compared to static baseline parameters.https://www.mdpi.com/1999-5903/17/1/46cellular vehicle-to-everythingmodulation coding schemepacket reception ratiofuzzy inference systemQ-learning
spellingShingle Teguh Indra Bayu
Yung-Fa Huang
Jeang-Kuo Chen
Cheng-Hsiung Hsieh
Budhi Kristianto
Erwien Christianto
Suharyadi Suharyadi
Advanced Optimization Algorithm Combining a Fuzzy Inference System for Vehicular Communications
Future Internet
cellular vehicle-to-everything
modulation coding scheme
packet reception ratio
fuzzy inference system
Q-learning
title Advanced Optimization Algorithm Combining a Fuzzy Inference System for Vehicular Communications
title_full Advanced Optimization Algorithm Combining a Fuzzy Inference System for Vehicular Communications
title_fullStr Advanced Optimization Algorithm Combining a Fuzzy Inference System for Vehicular Communications
title_full_unstemmed Advanced Optimization Algorithm Combining a Fuzzy Inference System for Vehicular Communications
title_short Advanced Optimization Algorithm Combining a Fuzzy Inference System for Vehicular Communications
title_sort advanced optimization algorithm combining a fuzzy inference system for vehicular communications
topic cellular vehicle-to-everything
modulation coding scheme
packet reception ratio
fuzzy inference system
Q-learning
url https://www.mdpi.com/1999-5903/17/1/46
work_keys_str_mv AT teguhindrabayu advancedoptimizationalgorithmcombiningafuzzyinferencesystemforvehicularcommunications
AT yungfahuang advancedoptimizationalgorithmcombiningafuzzyinferencesystemforvehicularcommunications
AT jeangkuochen advancedoptimizationalgorithmcombiningafuzzyinferencesystemforvehicularcommunications
AT chenghsiunghsieh advancedoptimizationalgorithmcombiningafuzzyinferencesystemforvehicularcommunications
AT budhikristianto advancedoptimizationalgorithmcombiningafuzzyinferencesystemforvehicularcommunications
AT erwienchristianto advancedoptimizationalgorithmcombiningafuzzyinferencesystemforvehicularcommunications
AT suharyadisuharyadi advancedoptimizationalgorithmcombiningafuzzyinferencesystemforvehicularcommunications