Research on Characteristic Analysis and Identification Methods for DC-Side Grounding Faults in Grid-Connected Photovoltaic Inverters

The analysis and accurate identification of DC-side grounding faults in grid-connected photovoltaic (PV) inverters is a critical step in enhancing operation and maintenance capabilities and ensuring the safe operation of PV grid-connected systems. However, the characteristics of DC-side grounding fa...

Full description

Saved in:
Bibliographic Details
Main Authors: Wanli Feng, Lei Su, Cao Kan, Mingjiang Wei, Changlong Li
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/13/3243
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The analysis and accurate identification of DC-side grounding faults in grid-connected photovoltaic (PV) inverters is a critical step in enhancing operation and maintenance capabilities and ensuring the safe operation of PV grid-connected systems. However, the characteristics of DC-side grounding faults remain unclear, and effective methods for identifying such faults are lacking. To address the need for leakage characteristic analysis and fault identification of DC-side grounding faults in grid-connected PV inverters, this paper first establishes an equivalent analysis model for DC-side grounding faults in three-phase grid-connected inverters. The formation mechanism and frequency-domain characteristics of residual current under DC-side fault conditions are analyzed, and the specific causes of different frequency components in the residual current are identified. Based on the leakage current mechanisms and statistical characteristics of grid-connected PV inverters, a multi-type DC-side grounding fault identification method is proposed using the light gradient-boosting machine (LGBM) algorithm. In the simulation case study, the proposed fault identification method, which combines mechanism characteristics and statistical characteristics, achieved an accuracy rate of 99%, which was significantly superior to traditional methods based solely on statistical characteristics and other machine learning algorithms. Real-time simulation verification shows that introducing mechanism-based features into grid-connected photovoltaic inverters can significantly improve the accuracy of identifying grounding faults on the DC side.
ISSN:1996-1073