Upcycled high-strength aluminum alloys from scrap through solid-phase alloying
Abstract Although recycling secondary aluminum can lead to energy consumption reduction compared to primary aluminum manufacturing, products produced by traditional melt-based recycling processes are inherently limited in terms of alloy composition and microstructure, and thus final properties. To o...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2024-12-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-024-53062-2 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Although recycling secondary aluminum can lead to energy consumption reduction compared to primary aluminum manufacturing, products produced by traditional melt-based recycling processes are inherently limited in terms of alloy composition and microstructure, and thus final properties. To overcome the constraints associated with melting, we have developed a solid-phase recycling and simultaneous alloying method. This innovative process enables the alloying of 6063 aluminum scrap with copper, zinc, and magnesium to form a nanocluster-strengthened high-performance aluminum alloy with a composition and properties akin to 7075 aluminum alloy. The unique nanostructure with a high density of Guinier-Preston zones and uniformly precipitated nanoscale η‘/Mg(CuZn)2 strengthening phases enhances both yield and ultimate tensile strength by >200%. By delivering high-performance products from scrap that are not just recycled but upcycled, this scalable manufacturing approach provides a model for metal reuse, with the option for on-demand upcycling of a variety of metallic materials from scrap sources. |
|---|---|
| ISSN: | 2041-1723 |