Estimation of Short-Term Vegetation Recovery in Post-Fire Siberian Dwarf Pine (<i>Pinus pumila</i>) Shrublands Based on Sentinel-2 Data
The frequency of wildfires ignited by lightning is increasing due to global climate change. Since the forest ecological recovery is influenced by numerous factors, the process of post-fire vegetation recovery in Siberian dwarf pine shrublands remains unclear and demands in-depth study. This paper ex...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-01-01
|
| Series: | Fire |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2571-6255/8/2/47 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The frequency of wildfires ignited by lightning is increasing due to global climate change. Since the forest ecological recovery is influenced by numerous factors, the process of post-fire vegetation recovery in Siberian dwarf pine shrublands remains unclear and demands in-depth study. This paper explored the short-term recovery process of vegetation after two lightning-ignited fires in the Great Xing’an Mountains that occurred in 2017 and 2020, respectively. The study was aimed at presenting a monitoring approach for estimating the post-fire vegetation state and assessing the influence of various driving factors on vegetation recovery. Spectral indices were computed to evaluate forest vegetation recovery dynamics. The differences in vegetation recovery under various fire severity and topography conditions were also examined. Correlation analysis was employed to assess the influence of moisture content on the recovery of fire sites. The results show that fire severity, topographic features, and moisture content significantly impacted the rate of vegetation recovery. Specifically, regeneration takes place more rapidly on warm, high-altitude, and gentle slopes within highly and moderately burned areas. Additionally, areas marked by high moisture content demonstrate rapid recovery. Our study enriches the research cases of global wildfires and vegetation recovery and provides a scientific basis for forest management and the restoration of post-fire ecosystems. |
|---|---|
| ISSN: | 2571-6255 |