A Comprehensive Analysis of a Social Intelligence Dataset and Response Tendencies Between Large Language Models (LLMs) and Humans

In recent years, advancements in the interaction and collaboration between humans and have garnered significant attention. Social intelligence plays a crucial role in facilitating natural interactions and seamless communication between humans and Artificial Intelligence (AI). To assess AI’s ability...

Full description

Saved in:
Bibliographic Details
Main Authors: Erika Mori, Yue Qiu, Hirokatsu Kataoka, Yoshimitsu Aoki
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/2/477
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent years, advancements in the interaction and collaboration between humans and have garnered significant attention. Social intelligence plays a crucial role in facilitating natural interactions and seamless communication between humans and Artificial Intelligence (AI). To assess AI’s ability to understand human interactions and the components necessary for such comprehension, datasets like Social-IQ have been developed. However, these datasets often rely on a simplistic question-and-answer format and lack justifications for the provided answers. Furthermore, existing methods typically produce direct answers by selecting from predefined choices without generating intermediate outputs, which hampers interpretability and reliability. To address these limitations, we conducted a comprehensive evaluation of AI methods on a video-based Question Answering (QA) benchmark focused on human interactions, leveraging additional annotations related to human responses. Our analysis highlights significant differences between human and AI response patterns and underscores critical shortcomings in current benchmarks. We anticipate that these findings will guide the creation of more advanced datasets and represent an important step toward achieving natural communication between humans and AI.
ISSN:1424-8220