Design and Prototyping of a Robotic Structure for Poultry Farming
The identification and prediction of losses, along with environmental and behavioral analyses and animal welfare monitoring, are key drivers for the use of technologies in poultry farming which help characterize the productive environment. Among these technologies, robotics emerges as a facilitator...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | AgriEngineering |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2624-7402/7/7/233 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The identification and prediction of losses, along with environmental and behavioral analyses and animal welfare monitoring, are key drivers for the use of technologies in poultry farming which help characterize the productive environment. Among these technologies, robotics emerges as a facilitator as it provides space for the use of several computing tools for capture, analysis and prediction. This study presents the full methodology for building a robot (so called <i>RobôFrango</i>) to its application in poultry farming. The construction method was based on evolutionary prototyping that allowed knowing and testing each physical component (electronic and mechanical) for assembling the robotic structure. This approach made it possible to identify the most suitable components for the broiler production system. The results presented motors, wheels, chassis, batteries and sensors that proved to be the most adaptable to the adversities existing in poultry farms. Validation of the final constructed structure was carried out through practical execution of the robot, seeking to understand how each component behaved in a commercial broiler aviary. It was concluded that it was possible to identify the best electronic and physical equipment for building a robotic prototype to work in poultry farms, and that a final product was generated. |
|---|---|
| ISSN: | 2624-7402 |