Computer Numerical Controlled Grinding and Physical Vapor Deposition for Fused Deposition Modelled Workpieces
The use of additive manufacturing (AM) enables companies to directly produce complex end-use parts. Fused deposition modelling (FDM) is an AM technology based on an extrusion process of fabricating parts. This layer-by-layer method results in a poor surface finish, and as a result, manual finishing...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2018-01-01
|
| Series: | Advances in Materials Science and Engineering |
| Online Access: | http://dx.doi.org/10.1155/2018/9037490 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The use of additive manufacturing (AM) enables companies to directly produce complex end-use parts. Fused deposition modelling (FDM) is an AM technology based on an extrusion process of fabricating parts. This layer-by-layer method results in a poor surface finish, and as a result, manual finishing is often required, which consequentially reduces the definition of the geometrical features. This research proposes a novel way of achieving high surface finishing by using additive and finishing processes, followed by a physical vapor deposition (PVD) coating. Two test pieces were produced, the first one was subjected to computer numerical controlled (CNC) mechanical grinding with appropriate grades of grindstones; the second one was subjected to microsandblasting to remove excess material and the stair-stepping effect. Both test pieces were then subjected to a PVD coating process to provide a metal thin film. To benchmark the test pieces, the authors used a coordinate measure machine for dimensions and a roughness meter to verify the effectiveness of this postprocessing approach. |
|---|---|
| ISSN: | 1687-8434 1687-8442 |