Investigation of the Evolution of Anisotropic Full-Field Strain Characteristics of Coal Samples Under Creep Loading Conditions

This work aims to reveal the full-field strain evolution characteristics and failure mechanisms of anisotropic coal samples under creep loading. A series of compression tests combined with digital image correlation (DIC) monitoring were employed to characterize the strain evolution process of coal s...

Full description

Saved in:
Bibliographic Details
Main Authors: Xuguang Li, Yu Wang, Xuefeng Yi, Xinyu Bai
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/15/8355
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work aims to reveal the full-field strain evolution characteristics and failure mechanisms of anisotropic coal samples under creep loading. A series of compression tests combined with digital image correlation (DIC) monitoring were employed to characterize the strain evolution process of coal specimens with bedding angles of 0°, 30°, 60°, and 90°. Testing results show that the peak strength, peak strain, and the creep loading stage of coal are significantly influenced by the bedding angle. The peak strength initially decreases and then increases as the bedding angle increases. In addition, the creep failure of coal manifests as a process of instantaneous deformation, decelerating creep, steady-state creep, accelerating creep, and failure. Under graded creep loading conditions, coal specimens exhibit distinct creep characteristics at high stress levels. Moreover, the bedding angle significantly influences the strain field evolution of the coal samples. Finally, for coal specimens with bedding angles of 0° and 90°, the final macroscopic fracture pattern upon failure is characterized by longitudinal tensile splitting. In contrast, coal samples with bedding angles of 30° and 60° tend to exhibit failure along the bedding interfaces, forming tensile-shear fractures. The results of this study will provide theoretical guidance for the prevention, early warning, and safety management of coal mine disasters.
ISSN:2076-3417