Vulnerability Assessment of Six Endemic Tibetan-Himalayan Plants Under Climate Change and Human Activities

The Tibetan-Himalayan region, recognized as a global biodiversity hotspot, is increasingly threatened by the dual pressures of climate change and human activities. Understanding the vulnerability of plant species to these forces is crucial for effective ecological conservation in this region. This s...

Full description

Saved in:
Bibliographic Details
Main Authors: Jin-Dong Wei, Wen-Ting Wang
Format: Article
Language:English
Published: MDPI AG 2025-08-01
Series:Plants
Subjects:
Online Access:https://www.mdpi.com/2223-7747/14/15/2424
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Tibetan-Himalayan region, recognized as a global biodiversity hotspot, is increasingly threatened by the dual pressures of climate change and human activities. Understanding the vulnerability of plant species to these forces is crucial for effective ecological conservation in this region. This study employed an improved Climate Niche Factor Analysis (CNFA) framework to assess the vulnerability of six representative alpine endemic herbaceous plants in this ecologically sensitive region under future climate changes. Our results show distinct spatial vulnerability patterns for the six species, with higher vulnerability in the western regions of the Tibetan-Himalayan region and lower vulnerability in the eastern areas. Particularly under high-emission scenarios (SSP5-8.5), climate change is projected to substantially intensify threats to these plant species, reinforcing the imperative for targeted conservation strategies. Additionally, we found that the current coverage of protected areas (PAs) within the species’ habitats was severely insufficient, with less than 25% coverage overall, and it was even lower (<7%) in highly vulnerable regions. Human activity hotspots, such as the regions around Lhasa and Chengdu, further exacerbate species vulnerability. Notably, some species currently classified as least concern (e.g., <i>Stipa purpurea</i> (<i>S. purpurea</i>)) according to the IUCN Red List exhibit higher vulnerability than species listed as near threatened (e.g., <i>Cyananthus microphyllus</i> (<i>C. microphylla</i>)) under future climate change. These findings suggest that existing biodiversity assessments, such as the IUCN Red List, may not adequately account for future climate risks, highlighting the importance of incorporating climate change projections into conservation planning. Our study calls for expanding and optimizing PAs, improving management, and enhancing climate resilience to mitigate biodiversity loss in the face of climate change and human pressures.
ISSN:2223-7747