Current- and Vibration-Based Detection of Misalignment Faults in Synchronous Reluctance Motors

Misalignment faults in drive systems occur when the motor and load are not properly aligned, leading to deviations in the centerlines of the coupled shafts. These faults can cause significant damage to bearings, shafts, and couplings, making early detection essential. Traditional diagnostic techniqu...

Full description

Saved in:
Bibliographic Details
Main Authors: Angela Navarro-Navarro, Vicente Biot-Monterde, Jose E. Ruiz-Sarrio, Jose A. Antonino-Daviu
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Machines
Subjects:
Online Access:https://www.mdpi.com/2075-1702/13/4/319
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850180505726615552
author Angela Navarro-Navarro
Vicente Biot-Monterde
Jose E. Ruiz-Sarrio
Jose A. Antonino-Daviu
author_facet Angela Navarro-Navarro
Vicente Biot-Monterde
Jose E. Ruiz-Sarrio
Jose A. Antonino-Daviu
author_sort Angela Navarro-Navarro
collection DOAJ
description Misalignment faults in drive systems occur when the motor and load are not properly aligned, leading to deviations in the centerlines of the coupled shafts. These faults can cause significant damage to bearings, shafts, and couplings, making early detection essential. Traditional diagnostic techniques rely on vibration monitoring, which provides insights into both mechanical and electromagnetic fault signatures. However, its main drawback is the need for external sensors, which may not be feasible in certain applications. Alternatively, motor current signature analysis (MCSA) has proven effective in detecting faults without requiring additional sensors. This study investigates misalignment faults in synchronous reluctance motors (SynRMs) by analyzing both vibration and current signals under different load conditions and operating speeds. Fast Fourier transform (FFT) is applied to extract characteristic frequency components linked to misalignment. Experimental results reveal that the amplitudes of rotational frequency harmonics (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mi>x</mi><msub><mi>f</mi><mi>r</mi></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mi>x</mi><msub><mi>f</mi><mi>r</mi></msub></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3</mn><mi>x</mi><msub><mi>f</mi><mi>r</mi></msub></mrow></semantics></math></inline-formula>) increase in the presence of misalignment, with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mi>x</mi><msub><mi>f</mi><mi>r</mi></msub></mrow></semantics></math></inline-formula> exhibiting the most stable progression. Additionally, acceleration-based vibration analysis proves to be a more reliable diagnostic tool compared to velocity measurements. These findings highlight the potential of combining current and vibration analysis to enhance misalignment detection in SynRMs, improving predictive maintenance strategies in industrial applications.
format Article
id doaj-art-52d9e470478c48b8bc7fb8ffba6848d1
institution OA Journals
issn 2075-1702
language English
publishDate 2025-04-01
publisher MDPI AG
record_format Article
series Machines
spelling doaj-art-52d9e470478c48b8bc7fb8ffba6848d12025-08-20T02:18:09ZengMDPI AGMachines2075-17022025-04-0113431910.3390/machines13040319Current- and Vibration-Based Detection of Misalignment Faults in Synchronous Reluctance MotorsAngela Navarro-Navarro0Vicente Biot-Monterde1Jose E. Ruiz-Sarrio2Jose A. Antonino-Daviu3Instituto Tecnológico de la Energía (ITE), Universitat Politècnica de València (UPV), Camino de Vera S/N, 46022 Valencia, SpainInstituto Tecnológico de la Energía (ITE), Universitat Politècnica de València (UPV), Camino de Vera S/N, 46022 Valencia, SpainInstituto Tecnológico de la Energía (ITE), Universitat Politècnica de València (UPV), Camino de Vera S/N, 46022 Valencia, SpainInstituto Tecnológico de la Energía (ITE), Universitat Politècnica de València (UPV), Camino de Vera S/N, 46022 Valencia, SpainMisalignment faults in drive systems occur when the motor and load are not properly aligned, leading to deviations in the centerlines of the coupled shafts. These faults can cause significant damage to bearings, shafts, and couplings, making early detection essential. Traditional diagnostic techniques rely on vibration monitoring, which provides insights into both mechanical and electromagnetic fault signatures. However, its main drawback is the need for external sensors, which may not be feasible in certain applications. Alternatively, motor current signature analysis (MCSA) has proven effective in detecting faults without requiring additional sensors. This study investigates misalignment faults in synchronous reluctance motors (SynRMs) by analyzing both vibration and current signals under different load conditions and operating speeds. Fast Fourier transform (FFT) is applied to extract characteristic frequency components linked to misalignment. Experimental results reveal that the amplitudes of rotational frequency harmonics (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mi>x</mi><msub><mi>f</mi><mi>r</mi></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mi>x</mi><msub><mi>f</mi><mi>r</mi></msub></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3</mn><mi>x</mi><msub><mi>f</mi><mi>r</mi></msub></mrow></semantics></math></inline-formula>) increase in the presence of misalignment, with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mi>x</mi><msub><mi>f</mi><mi>r</mi></msub></mrow></semantics></math></inline-formula> exhibiting the most stable progression. Additionally, acceleration-based vibration analysis proves to be a more reliable diagnostic tool compared to velocity measurements. These findings highlight the potential of combining current and vibration analysis to enhance misalignment detection in SynRMs, improving predictive maintenance strategies in industrial applications.https://www.mdpi.com/2075-1702/13/4/319accelerationcurrent analysisdiagnosisfast Fourier transformmisalignmentsynchronous reluctance motor
spellingShingle Angela Navarro-Navarro
Vicente Biot-Monterde
Jose E. Ruiz-Sarrio
Jose A. Antonino-Daviu
Current- and Vibration-Based Detection of Misalignment Faults in Synchronous Reluctance Motors
Machines
acceleration
current analysis
diagnosis
fast Fourier transform
misalignment
synchronous reluctance motor
title Current- and Vibration-Based Detection of Misalignment Faults in Synchronous Reluctance Motors
title_full Current- and Vibration-Based Detection of Misalignment Faults in Synchronous Reluctance Motors
title_fullStr Current- and Vibration-Based Detection of Misalignment Faults in Synchronous Reluctance Motors
title_full_unstemmed Current- and Vibration-Based Detection of Misalignment Faults in Synchronous Reluctance Motors
title_short Current- and Vibration-Based Detection of Misalignment Faults in Synchronous Reluctance Motors
title_sort current and vibration based detection of misalignment faults in synchronous reluctance motors
topic acceleration
current analysis
diagnosis
fast Fourier transform
misalignment
synchronous reluctance motor
url https://www.mdpi.com/2075-1702/13/4/319
work_keys_str_mv AT angelanavarronavarro currentandvibrationbaseddetectionofmisalignmentfaultsinsynchronousreluctancemotors
AT vicentebiotmonterde currentandvibrationbaseddetectionofmisalignmentfaultsinsynchronousreluctancemotors
AT joseeruizsarrio currentandvibrationbaseddetectionofmisalignmentfaultsinsynchronousreluctancemotors
AT joseaantoninodaviu currentandvibrationbaseddetectionofmisalignmentfaultsinsynchronousreluctancemotors